Abstract
Restriction fragment length polymorphism analysis has been used to assess relatedness among the genomes of four isolates of Mycobacterium leprae, the causative agent of leprosy. The M. leprae isolates were from human patients from India, a Mangabey monkey from West Africa, and an armadillo from Louisiana. A total of 16 probes were used; these were insert fragments of M. leprae DNA from plasmid recombinant libraries, 5 of which had genes with identifiable functions and 11 of which were randomly chosen recombinant molecules. In spite of the widely diverse origins of the isolates, restriction fragment length polymorphism analysis demonstrated that less than 0.3% of the nucleotides differ among the genomes.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anilionis A., Riley M. Conservation and variation of nucleotide sequences within related bacterial genomes: Escherichia coli strains. J Bacteriol. 1980 Jul;143(1):355–365. doi: 10.1128/jb.143.1.355-365.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986 May 14;136(3):1136–1141. doi: 10.1016/0006-291x(86)90452-3. [DOI] [PubMed] [Google Scholar]
- Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
- Clark-Curtiss J. E., Docherty M. A. A species-specific repetitive sequence in Mycobacterium leprae DNA. J Infect Dis. 1989 Jan;159(1):7–15. doi: 10.1093/infdis/159.1.7. [DOI] [PubMed] [Google Scholar]
- Clark-Curtiss J. E., Jacobs W. R., Docherty M. A., Ritchie L. R., Curtiss R., 3rd Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J Bacteriol. 1985 Mar;161(3):1093–1102. doi: 10.1128/jb.161.3.1093-1102.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colston M. J., Hilson G. R. Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. Nature. 1976 Jul 29;262(5567):399–401. doi: 10.1038/262399a0. [DOI] [PubMed] [Google Scholar]
- Donham K. J., Leininger J. R. Spontaneous leprosy-like disease in a chimpanzee. J Infect Dis. 1977 Jul;136(1):132–136. doi: 10.1093/infdis/136.1.132. [DOI] [PubMed] [Google Scholar]
- Draper P. Cell walls of Mycobacterium leprae. Int J Lepr Other Mycobact Dis. 1976 Jan-Jun;44(1-2):95–98. [PubMed] [Google Scholar]
- Eisenach K. D., Crawford J. T., Bates J. H. Genetic relatedness among strains of the Mycobacterium tuberculosis complex. Analysis of restriction fragment heterogeneity using cloned DNA probes. Am Rev Respir Dis. 1986 Jun;133(6):1065–1068. doi: 10.1164/arrd.1986.133.6.1065. [DOI] [PubMed] [Google Scholar]
- Fieldsteel A. H., Levy L. Neonatally thymectomized Lewis rats infected with Mycobacterium leprae: response to primary infection, secondary challenge, and large inocula. Infect Immun. 1976 Sep;14(3):736–741. doi: 10.1128/iai.14.3.736-741.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosskinsky C. M., Jacobs W. R., Jr, Clark-Curtiss J. E., Bloom B. R. Genetic relationships among Mycobacterium leprae, Mycobacterium tuberculosis, and candidate leprosy vaccine strains determined by DNA hybridization: identification of an M. leprae-specific repetitive sequence. Infect Immun. 1989 May;57(5):1535–1541. doi: 10.1128/iai.57.5.1535-1541.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter S. W., Brennan P. J. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J Bacteriol. 1981 Sep;147(3):728–735. doi: 10.1128/jb.147.3.728-735.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imaeda T., Kirchheimer W. F., Barksdale L. DNA isolated from Mycobacterium leprae: genome size, base ratio, and homology with other related bacteria as determined by optical DNA-DNA reassociation. J Bacteriol. 1982 Apr;150(1):414–417. doi: 10.1128/jb.150.1.414-417.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs W. R., Docherty M. A., Curtiss R., 3rd, Clark-Curtiss J. E. Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1926–1930. doi: 10.1073/pnas.83.6.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchheimer W. F., Storrs E. E., Binford C. H. Attempts to establish the Armadillo (Dasypus novemcinctus linn.) as a model for the study of leprosy. II. Histopathologic and bacteriologic post-mortem findings in lepromatoid leprosy in the Armadillo. Int J Lepr Other Mycobact Dis. 1972 Jul-Sep;40(3):229–242. [PubMed] [Google Scholar]
- McFadden J. J., Butcher P. D., Chiodini R., Hermon-Taylor J. Crohn's disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between mycobacterial species. J Clin Microbiol. 1987 May;25(5):796–801. doi: 10.1128/jcm.25.5.796-801.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers W. M., Walsh G. P., Brown H. L., Binford C. H., Imes G. D., Jr, Hadfield T. L., Schlagel C. J., Fukunishi Y., Gerone P. J., Wolf R. H. Leprosy in a mangabey monkey--naturally acquired infection. Int J Lepr Other Mycobact Dis. 1985 Mar;53(1):1–14. [PubMed] [Google Scholar]
- Portaels F., Asselineau C., Baess I., Daffé M., Dobson G., Draper P., Gregory D., Hall R. M., Imaeda T., Jenkins P. A. A cooperative taxonomic study of mycobacteria isolated from armadillos infected with Mycobacterium leprae. J Gen Microbiol. 1986 Oct;132(10):2693–2707. doi: 10.1099/00221287-132-10-2693. [DOI] [PubMed] [Google Scholar]
- Sapienza C., Doolittle W. F. Unusual physical organization of the Halobacterium genome. Nature. 1982 Feb 4;295(5848):384–389. doi: 10.1038/295384a0. [DOI] [PubMed] [Google Scholar]
- Sela S., Clark-Curtiss J. E., Bercovier H. Characterization and taxonomic implications of the rRNA genes of Mycobacterium leprae. J Bacteriol. 1989 Jan;171(1):70–73. doi: 10.1128/jb.171.1.70-73.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Storrs E. E. The nine-banded armadillo: a model for leprosy and other biomedical research. Int J Lepr Other Mycobact Dis. 1971 Jul-Sep;39(3):703–714. [PubMed] [Google Scholar]
- Upholt W. B. Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res. 1977;4(5):1257–1265. doi: 10.1093/nar/4.5.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh G. P., Storrs E. E., Burchfield H. P., Cotrell E. H., Vidrine M. F., Binford C. H. Leprosy-like disease occurring naturally in armadillos. J Reticuloendothel Soc. 1975 Dec;18(6):347–351. [PubMed] [Google Scholar]
- Young R. A., Mehra V., Sweetser D., Buchanan T., Clark-Curtiss J., Davis R. W., Bloom B. R. Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature. 1985 Aug 1;316(6027):450–452. doi: 10.1038/316450a0. [DOI] [PubMed] [Google Scholar]



