Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Sep;171(9):5012–5016. doi: 10.1128/jb.171.9.5012-5016.1989

Isolation, characterization, and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b.

Y P Chen 1, D C Yoch 1
PMCID: PMC210311  PMID: 2768195

Abstract

A ferredoxin-NAD+ oxidoreductase (EC 1.18.1.3) has been isolated from extracts of the obligate methanotroph Methylosinus trichosporium OB3b. This enzyme was shown to couple electron flow from formate dehydrogenase (NAD+ requiring) to ferredoxin. Ferredoxin-NAD+ reductase was purified to homogeneity by conventional chromatography techniques and was shown to be a flavoprotein with a molecular weight of 36,000 +/- 1,000. This ferredoxin reductase was specific for NADH (Km, 125 microM) and coupled electron flow to the native ferredoxin and to ferredoxins from spinach, Clostridium pasteurianum, and Rhodospirillum rubrum (ferredoxin II). M. trichosporium ferredoxin saturated the ferredoxin-NAD+ reductase at a concentration 2 orders of magnitude lower (3 nM) than did spinach ferredoxin (0.4 microM). Ferredoxin-NAD+ reductase also had transhydrogenase activity which transferred electrons and protons from NADH to thionicotinamide adenine dinucleotide phosphate (Km, 9 microM) and from NADPH to 3-acetylpyridine adenine dinucleotide (Km, 16 microM). Reconstitution of a soluble electron transport pathway that coupled formate oxidation to ferredoxin reduction required formate dehydrogenase, NAD+, and ferredoxin-NAD+ reductase.

Full text

PDF
5012

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bogusz D., Houmard J., Aubert J. P. Electron transport to nitrogenase in Klebsiella pneumoniae: purification and properties of the nifJ protein. Eur J Biochem. 1981 Nov;120(2):421–426. doi: 10.1111/j.1432-1033.1981.tb05719.x. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. P., Yoch D. C. Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b. J Bacteriol. 1987 Oct;169(10):4778–4783. doi: 10.1128/jb.169.10.4778-4783.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jungermann K., Kirchniawy H., Katz N., Thauer R. K. NADH, a physiological electron donor in clostridial nitrogen fixation. FEBS Lett. 1974 Jul 15;43(2):203–206. doi: 10.1016/0014-5793(74)81000-8. [DOI] [PubMed] [Google Scholar]
  5. Jungermann K., Rupprecht E., Ohrloff C., Thauer R., Decker K. Regulation of the reduced nicotinamide adenine dinucleotide-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):960–963. [PubMed] [Google Scholar]
  6. Katagiri M., Ganguli B. N., Gunsalus I. C. A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem. 1968 Jun 25;243(12):3543–3546. [PubMed] [Google Scholar]
  7. Kerscher L., Oesterhelt D. Ferredoxin is the coenzyme of alpha-ketoacid oxidoreductases in Halobacterium halobium. FEBS Lett. 1977 Nov 15;83(2):197–201. doi: 10.1016/0014-5793(77)81004-1. [DOI] [PubMed] [Google Scholar]
  8. Lambeth J. D., Kamin H. Adrenodoxin reductase.adrenodoxin complex. Flavin to iron-sulfur electron transfer as the rate-limiting step in the NADPH-cytochrome c reductase reaction. J Biol Chem. 1979 Apr 25;254(8):2766–2774. [PubMed] [Google Scholar]
  9. Reddy C. A., Bryant M. P., Wolin M. J. Ferredoxin- and nicotinamide adenine dinucleotide-dependent H 2 production from ethanol and formate in extracts of S organism isolated from "Methanobacillus omelianskii". J Bacteriol. 1972 Apr;110(1):126–132. doi: 10.1128/jb.110.1.126-132.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
  11. STEIN A. M., KAPLAN N. O., CIOTTI M. M. Pyridine nucleotide transhydrogenase. VII. Determination of the reactions with coenzyme analogues in mammalian tissues. J Biol Chem. 1959 Apr;234(4):979–986. [PubMed] [Google Scholar]
  12. Stirling D. I., Dalton H. Properties of the methane mono-oxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath). Eur J Biochem. 1979 May 2;96(1):205–212. doi: 10.1111/j.1432-1033.1979.tb13030.x. [DOI] [PubMed] [Google Scholar]
  13. Subramanian V., Liu T. N., Yeh W. K., Serdar C. M., Wackett L. P., Gibson D. T. Purification and properties of ferredoxinTOL. A component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem. 1985 Feb 25;260(4):2355–2363. [PubMed] [Google Scholar]
  14. Thauer R. K., Rupprecht E., Ohrloff C., Jungermann K., Decker K. Regulation of the reduced nicotinamide adenine dinucleotide phosphate-ferredoxin reductase system in Clostridium kluyveri. J Biol Chem. 1971 Feb 25;246(4):954–959. [PubMed] [Google Scholar]
  15. Yoch D. C., Carithers R. P. Bacterial iron-sulfur proteins. Microbiol Rev. 1979 Sep;43(3):384–421. doi: 10.1128/mr.43.3.384-421.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yoch D. C. Purification and characterization of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase from a nitrogen-fixing bacterium. J Bacteriol. 1973 Oct;116(1):384–391. doi: 10.1128/jb.116.1.384-391.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoch D. C. The electron transport system in nitrogen fixation by azotobacter. IV. Some oxidation-reduction properties of azotoflavin. Biochem Biophys Res Commun. 1972 Oct 17;49(2):335–342. doi: 10.1016/0006-291x(72)90415-9. [DOI] [PubMed] [Google Scholar]
  18. Zanetti G., Forti G. Studies on the triphosphopyridine nucleotide-cytochrome f reductase of chloroplasts. J Biol Chem. 1966 Jan 25;241(2):279–285. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES