Abstract
Legionella micdadei, a pathogen which enters into host phagocyte phagolysosomal structures, contains at least two protein kinases. We have purified to homogeneity the predominant, nucleotide-independent protein kinase and examined its ability to catalyze the transfer of phosphate from ATP to acceptors in human neutrophils. The L. micdadei protein kinase catalyzed the phosphorylation of proteins of 11.5, 14, 19, 23, 28, 34, and 38 kilodaltons (kDa) present in a Triton X-100 extract of neutrophil membranes and of 11.5, 13.5, 25, and 38 kDa in the neutrophil cytosol. Tubulin was a good substrate for the L. micdadei protein kinase in vitro. The bacterial kinase also catalyzed the phosphorylation of phosphatidylinositol (PI) at about half the rate at which histones were phosphorylated; phosphatidylinositol-4-phosphate (PIP) was not phosphorylated by the kinase. The PI kinase activity of the L. micdadei enzyme was optimum at pH 7.0, and the divalent cation requirement was satisfied best by Mg2+ and Ca2+. The maximum rate of PI phosphorylation was obtained with 0.6 mM PI; in the presence of MgCl2 (10 mM), the Km for PI was 0.9 mM and the Km for ATP was 1.5 mM. The detergents octyl-beta-D-glucoside (10 to 20 mM) and Triton X-100 (0.5%) stimulated kinase activity twofold when PI was the phosphate acceptor; however, only octyl glucoside stimulated histone kinase activity. Various membrane phospholipids inhibited PI kinase activity. The most potent phospholipid inhibitor was the product of the PI kinase reaction, PIP, which at a 0.6 mM concentration inhibited both PI and tubulin phosphorylation by 80%. The inhibition of kinase activity by PIP when histone served as the acceptor was noncompetitive in character. The L. micdadei kinase also phosphorylated PI in intact. (3H)inositol-labeled neutrophils. The PI kinase and histone kinase activities of teh L. micdadei kinase copurified and cofucused (pI, 5.8) when subjected to isoelectric focusing, suggesting that the two enzymatic activities reside in a single protein.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Caillon E., Lubochinsky B., Rigomier D. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J Bacteriol. 1983 Mar;153(3):1348–1351. doi: 10.1128/jb.153.3.1348-1351.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das S., Saha A. K., Mukhopadhyay N. K., Glew R. H. A cyclic nucleotide-independent protein kinase in Leishmania donovani. Biochem J. 1986 Dec 15;240(3):641–649. doi: 10.1042/bj2400641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsbach P., Weiss J. Phagocytosis of bacteria and phospholipid degradation. Biochim Biophys Acta. 1988 Feb 24;947(1):29–52. doi: 10.1016/0304-4157(88)90018-4. [DOI] [PubMed] [Google Scholar]
- Finnerty W. R., Makula R. A., Feeley J. C. Cellular lipids of the Legionnaires' disease bacterium. Ann Intern Med. 1979 Apr;90(4):631–634. doi: 10.7326/0003-4819-90-4-631. [DOI] [PubMed] [Google Scholar]
- Friedman R. L., Iglewski B. H., Miller R. D. Identification of a cytotoxin produced by Legionella pneumophila. Infect Immun. 1980 Jul;29(1):271–274. doi: 10.1128/iai.29.1.271-274.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman R. L., Lochner J. E., Bigley R. H., Iglewski B. H. The effects of Legionella pneumophila toxin on oxidative processes and bacterial killing of human polymorphonuclear leukocytes. J Infect Dis. 1982 Sep;146(3):328–334. doi: 10.1093/infdis/146.3.328. [DOI] [PubMed] [Google Scholar]
- Goldfine I. D. The insulin receptor: molecular biology and transmembrane signaling. Endocr Rev. 1987 Aug;8(3):235–255. doi: 10.1210/edrv-8-3-235. [DOI] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J Exp Med. 1981 Feb 1;153(2):386–397. doi: 10.1084/jem.153.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980 Sep;66(3):441–450. doi: 10.1172/JCI109874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med. 1983 Dec 1;158(6):2108–2126. doi: 10.1084/jem.158.6.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou W. M., Zhang Z. L., Tai H. H. Purification and characterization of phosphatidylinositol kinase from porcine liver microsomes. Biochim Biophys Acta. 1988 Mar 4;959(1):67–75. [PubMed] [Google Scholar]
- Jameson L., Frey T., Zeeberg B., Dalldorf F., Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 1980 May 27;19(11):2472–2479. doi: 10.1021/bi00552a027. [DOI] [PubMed] [Google Scholar]
- Kadowaki T., Fujita-Yamaguchi Y., Nishida E., Takaku F., Akiyama T., Kathuria S., Akanuma Y., Kasuga M. Phosphorylation of tubulin and microtubule-associated proteins by the purified insulin receptor kinase. J Biol Chem. 1985 Apr 10;260(7):4016–4020. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lochner J. E., Bigley R. H., Iglewski B. H. Defective triggering of polymorphonuclear leukocyte oxidative metabolism by Legionella pneumophila toxin. J Infect Dis. 1985 Jan;151(1):42–46. doi: 10.1093/infdis/151.1.42. [DOI] [PubMed] [Google Scholar]
- Margulis L., To L., Chase D. Microtubules in prokaryotes. Science. 1978 Jun 9;200(4346):1118–1124. doi: 10.1126/science.349692. [DOI] [PubMed] [Google Scholar]
- Mukhopadhyay N. K., Saha A. K., Lovelace J. K., Da Silva R., Sacks D. L., Glew R. H. Comparison of the protein kinase and acid phosphatase activities of five species of Leishmania. J Protozool. 1988 Nov;35(4):601–607. doi: 10.1111/j.1550-7408.1988.tb04158.x. [DOI] [PubMed] [Google Scholar]
- Nash T. W., Libby D. M., Horwitz M. A. Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest. 1984 Sep;74(3):771–782. doi: 10.1172/JCI111493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Shea J. J., Harford J. B., Klausner R. D. Identification and characterization of the phosphatidylinositol kinase in membranes of murine T lymphocytes. J Immunol. 1986 Aug 1;137(3):971–976. [PubMed] [Google Scholar]
- Porter F. D., Li Y. S., Deuel T. F. Purification and characterization of a phosphatidylinositol 4-kinase from bovine uteri. J Biol Chem. 1988 Jun 25;263(18):8989–8995. [PubMed] [Google Scholar]
- Prentki M., Wollheim C. B., Lew P. D. Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-triphosphate. J Biol Chem. 1984 Nov 25;259(22):13777–13782. [PubMed] [Google Scholar]
- Ryder M. I., Niederman R., Taggart E. J. The cytoskeleton of human polymorphonuclear leukocytes: phagocytosis and degranulation. Anat Rec. 1982 Jul;203(3):317–327. doi: 10.1002/ar.1092030302. [DOI] [PubMed] [Google Scholar]
- Saha A. K., Dowling J. N., LaMarco K. L., Das S., Remaley A. T., Olomu N., Pope M. T., Glew R. H. Properties of an acid phosphatase from Legionella micdadei which blocks superoxide anion production by human neutrophils. Arch Biochem Biophys. 1985 Nov 15;243(1):150–160. doi: 10.1016/0003-9861(85)90783-0. [DOI] [PubMed] [Google Scholar]
- Saha A. K., Dowling J. N., Mukhopadhyay N. K., Glew R. H. Demonstration of two protein kinases in extracts of Legionella micdadei. J Gen Microbiol. 1988 May;134(5):1275–1281. doi: 10.1099/00221287-134-5-1275. [DOI] [PubMed] [Google Scholar]
- Saha A. K., Dowling J. N., Pasculle A. W., Glew R. H. Legionella micdadei phosphatase catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate in human neutrophils. Arch Biochem Biophys. 1988 Aug 15;265(1):94–104. doi: 10.1016/0003-9861(88)90375-x. [DOI] [PubMed] [Google Scholar]
- Sale G. J., Fujita-Yamaguchi Y., Kahn C. R. Characterization of phosphatidylinositol kinase activity associated with the insulin receptor. Eur J Biochem. 1986 Mar 3;155(2):345–351. doi: 10.1111/j.1432-1033.1986.tb09497.x. [DOI] [PubMed] [Google Scholar]
- Sweet L. J., Dudley D. T., Pessin J. E., Spector A. A. Phospholipid activation of the insulin receptor kinase: regulation by phosphatidylinositol. FASEB J. 1987 Jul;1(1):55–59. doi: 10.1096/fasebj.1.1.3038645. [DOI] [PubMed] [Google Scholar]
- Thompson D. M., Cochet C., Chambaz E. M., Gill G. N. Separation and characterization of a phosphatidylinositol kinase activity that co-purifies with the epidermal growth factor receptor. J Biol Chem. 1985 Jul 25;260(15):8824–8830. [PubMed] [Google Scholar]
- Vallee R. B. Reversible assembly purification of microtubules without assembly-promoting agents and further purification of tubulin, microtubule-associated proteins, and MAP fragments. Methods Enzymol. 1986;134:89–104. doi: 10.1016/0076-6879(86)34078-3. [DOI] [PubMed] [Google Scholar]
- Wadee A. A., Mendelsohn D., Rabson A. R. Characterization of a suppressor cell-activating factor (SCAF) released by adherent cells treated with M. tuberculosis. J Immunol. 1983 May;130(5):2266–2270. [PubMed] [Google Scholar]
- Wandosell F., Serrano L., Avila J. Phosphorylation of alpha-tubulin carboxyl-terminal tyrosine prevents its incorporation into microtubules. J Biol Chem. 1987 Jun 15;262(17):8268–8273. [PubMed] [Google Scholar]
- Wandosell F., Serrano L., Hernández M. A., Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem. 1986 Aug 5;261(22):10332–10339. [PubMed] [Google Scholar]
- Weinbaum D. L., Bailey J., Benner R. R., Pasculle A. W., Dowling J. N. The contribution of human neutrophils and serum to host defense against Legionella micdadei. J Infect Dis. 1983 Sep;148(3):510–517. doi: 10.1093/infdis/148.3.510. [DOI] [PubMed] [Google Scholar]
- Weinbaum D. L., Benner R. R., Dowling J. N., Alpern A., Pasculle A. W., Donowitz G. R. Interaction of Legionella micdadei with human monocytes. Infect Immun. 1984 Oct;46(1):68–73. doi: 10.1128/iai.46.1.68-73.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]