Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Sep;171(9):5187–5189. doi: 10.1128/jb.171.9.5187-5189.1989

Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31.

A A Bhagwat 1, S K Apte 1
PMCID: PMC210338  PMID: 2504700

Abstract

Heat, salinity, or osmotic stress influenced protein synthesis in nitrogen-fixing Anabaena sp. strain L-31. Salinity and osmotic stresses were identical and specifically induced 15 polypeptides. Four polypeptides were unique to heat shock, and four other polypeptides were induced under every stress. The results demonstrate a commonality and a stress specificity of protein synthesis regulation.

Full text

PDF
5187

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apte S. K., Bhagwat A. A. Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt. J Bacteriol. 1989 Feb;171(2):909–915. doi: 10.1128/jb.171.2.909-915.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apte S. K., Reddy B. R., Thomas J. Relationship between Sodium Influx and Salt Tolerance of Nitrogen-Fixing Cyanobacteria. Appl Environ Microbiol. 1987 Aug;53(8):1934–1939. doi: 10.1128/aem.53.8.1934-1939.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borbély G., Surányi G., Korcz A., Pálfi Z. Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bacteriol. 1985 Mar;161(3):1125–1130. doi: 10.1128/jb.161.3.1125-1130.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edelman L., Czarnecka E., Key J. L. Induction and Accumulation of Heat Shock-Specific Poly(A) RNAs and Proteins in Soybean Seedlings during Arsenite and Cadmium Treatments. Plant Physiol. 1988 Apr;86(4):1048–1056. doi: 10.1104/pp.86.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ericson M. C., Alfinito S. H. Proteins Produced during Salt Stress in Tobacco Cell Culture. Plant Physiol. 1984 Mar;74(3):506–509. doi: 10.1104/pp.74.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harrington H. M., Alm D. M. Interaction of heat and salt shock in cultured tobacco cells. Plant Physiol. 1988 Nov;88(3):618–625. doi: 10.1104/pp.88.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  8. Ostrem J. A., Olson S. W., Schmitt J. M., Bohnert H. J. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum. Plant Physiol. 1987 Aug;84(4):1270–1275. doi: 10.1104/pp.84.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ramagopal S. Salinity stress induced tissue-specific proteins in barley seedlings. Plant Physiol. 1987 Jun;84(2):324–331. doi: 10.1104/pp.84.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thomas J. Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. Nature. 1970 Oct 10;228(5267):181–183. doi: 10.1038/228181b0. [DOI] [PubMed] [Google Scholar]
  11. Yost H. J., Lindquist S. Translation of unspliced transcripts after heat shock. Science. 1988 Dec 16;242(4885):1544–1548. doi: 10.1126/science.3201243. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES