Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Nov;171(11):6265–6270. doi: 10.1128/jb.171.11.6265-6270.1989

Purification of a fourth glucosyltransferase from Streptococcus sobrinus.

Y Yamashita 1, N Hanada 1, T Takehara 1
PMCID: PMC210498  PMID: 2530209

Abstract

Recently, we found a novel primer-independent, water-soluble glucan synthase as a fourth glucosyltransferase (GTF) in a culture supernatant of strain AHT-k of Streptococcus sobrinus (Y. Yamashita, N. Hanada, and T. Takehara, Biochem. Biophys. Res. Commun. 150:687-693, 1988). In the present study, four kinds of purified GTFs, including the novel GTF, were prepared. They were composed of two primer-dependent GTFs and two primer-independent GTFs. Of the primer-dependent GTFs, one was a water-insoluble glucan synthase and the other was a water-soluble glucan synthase; both of the primer-independent GTFs were water-soluble glucan synthases (GTF-Sis). Using antisera against four purified GTFs, we concluded that the immunological properties of each were completely different from those of the others. Additionally, it was shown that the novel GTF-Si, which was previously shown to have a molecular weight of 137,000, was proteolytically degraded and could be isolated at a molecular weight of 152,000 and that Streptococcus cricetus secreted an enzyme that immunologically cross-reacted with GTF-Si. While the product of the novel GTF-Si was not an effective primer for both of the primer-dependent enzymes (water-soluble and -insoluble glucan synthases), the product of the enzyme affected the molecular size of the products of the other GTF-Sis.

Full text

PDF
6265

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Fukui K., Kokeguchi S., Kato K., Miyake Y., Nogami R., Moriyama T. Immunochemical properties of glucosyltransferases from Streptococcus mutans. Infect Immun. 1983 Feb;39(2):762–766. doi: 10.1128/iai.39.2.762-766.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fukui K., Moriyama T., Miyake Y., Mizutani K., Tanaka O. Purification and properties of glucosyltransferase responsible for water-insoluble glucan synthesis from Streptococcus mutans. Infect Immun. 1982 Jul;37(1):1–9. doi: 10.1128/iai.37.1.1-9.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Halhoul M. N., Kleinberg I. Differential determination of glucose and fructose, and glucose- and fructose-yielding substances with anthrone. Anal Biochem. 1972 Dec;50(2):337–343. doi: 10.1016/0003-2697(72)90042-5. [DOI] [PubMed] [Google Scholar]
  5. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanada N., Takehara T. (1----3)-alpha-D-glucan synthase from Streptococcus mutans AHT (serotype g) does not synthesise glucan without primer. Carbohydr Res. 1987 Oct 15;168(1):120–124. doi: 10.1016/0008-6215(87)80013-7. [DOI] [PubMed] [Google Scholar]
  7. Hanada N., Takehara T. Comparison of different water-soluble glucan synthases from Streptococcus mutans serotype g. Microbios. 1987;50(204-205):147–152. [PubMed] [Google Scholar]
  8. Hanada N., Takehara T., Saeki E. Purification and characterization of a third glucosyltransferase from Streptococcus mutans serotype g. J Gen Microbiol. 1987 May;133(5):1351–1358. doi: 10.1099/00221287-133-5-1351. [DOI] [PubMed] [Google Scholar]
  9. Kametaka S., Hayashi S., Miyake Y., Suginaka H. Electrophoretic studies of extracellular glucosyltransferases and fructosyltransferases from seventeen strains of Streptococcus mutans. Arch Microbiol. 1987 Apr;147(3):207–212. doi: 10.1007/BF00463476. [DOI] [PubMed] [Google Scholar]
  10. Koga T., Sato S., Inoue M., Takeuchi K., Furuta T., Hamada S. Role of primers in glucan synthesis by glucosyltransferases from Streptococcus mutans strain OMZ176. J Gen Microbiol. 1983 Mar;129(3):751–754. doi: 10.1099/00221287-129-3-751. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. McCabe M. M., Alberts M., Stein J. Monoclonal antibodies to the extracellular glucosyltransferases from Streptococcus sobrinus 6715. Infect Immun. 1987 Aug;55(8):1900–1905. doi: 10.1128/iai.55.8.1900-1905.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCabe M. M. Purification and characterization of a primer-independent glucosyltransferase from Streptococcus mutans 6715-13 mutant 27. Infect Immun. 1985 Dec;50(3):771–777. doi: 10.1128/iai.50.3.771-777.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montville T. J., Cooney C. L., Sinskey A. J. Streptococcus mutans dextransucrase: a review. Adv Appl Microbiol. 1978;24:55–84. doi: 10.1016/s0065-2164(08)70636-1. [DOI] [PubMed] [Google Scholar]
  15. Mooser G., Shur D., Lyou M., Watanabe C. Kinetic studies on dextransucrase from the cariogenic oral bacterium Streptococcus mutans. J Biol Chem. 1985 Jun 10;260(11):6907–6915. [PubMed] [Google Scholar]
  16. Robyt J. F., Martin P. J. Mechanism of synthesis of D-glucans by D-glucosyltransferases from Streptococcus mutans 6715. Carbohydr Res. 1983 Mar 1;113(2):301–315. doi: 10.1016/0008-6215(83)88245-7. [DOI] [PubMed] [Google Scholar]
  17. Shimamura A., Tsumori H., Mukasa H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim Biophys Acta. 1982 Mar 18;702(1):72–80. doi: 10.1016/0167-4838(82)90028-0. [DOI] [PubMed] [Google Scholar]
  18. Shimamura A., Tsumori H., Mukasa H. Three kinds of extracellular glucosyltransferases from Streptococcus mutans 6715 (serotype g). FEBS Lett. 1983 Jun 27;157(1):79–84. doi: 10.1016/0014-5793(83)81120-x. [DOI] [PubMed] [Google Scholar]
  19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamashita Y., Hanada N., Takehara T. A novel glucosyltransferase from Streptococcus mutans produces oligo-isomaltosaccharides. Biochem Biophys Res Commun. 1988 Jan 29;150(2):687–693. doi: 10.1016/0006-291x(88)90446-9. [DOI] [PubMed] [Google Scholar]
  21. Yamashita Y., Shigeoka T., Hanada N., Takehara T. Immunological properties of the primer-independent glucosyltransferase of Streptococcus mutans serotypes d and g. J Gen Microbiol. 1988 May;134(5):1223–1227. doi: 10.1099/00221287-134-5-1223. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES