Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Nov;171(11):6330–6337. doi: 10.1128/jb.171.11.6330-6337.1989

Mutational analysis of the histidine operon promoter of Salmonella typhimurium.

R F Shand 1, P H Blum 1, D L Holzschu 1, M S Urdea 1, S W Artz 1
PMCID: PMC210507  PMID: 2553676

Abstract

We isolated a collection of 67 independent, spontaneous Salmonella typhimurium his operon promoter mutants with decreased his expression. The mutants were isolated by selecting for resistance to the toxic lactose analog o-nitrophenyl-beta-D-thiogalactoside in a his-lac fusion strain. The collection included base pair substitutions. small insertions, a deletion, and one large insertion identified as IS30 (IS121), which is resident on the Mu d1 cts(Apr lac) phage used to construct the his-lac fusion. Of the 37 mutations that were sequenced, 14 were unique. Six of the 14 were isolated more than once, with the IS30 insertion occurring 16 times. The mutations were located throughout the his promoter region, with two in the conserved - 35 hexamer sequence, four in the conserved - 10 hexamer sequence (Pribnow box), seven in the spacer between the - 10 and -35 hexamer sequences, and the IS30 insertions just upstream of the -35 hexamer sequence. Four of the five substitution mutations changed a consensus base pair recognized by E sigma 70 RNA polymerase in the -10 or -35 hexamer. Decreased his expression caused by the 14 different his promoter mutations was measured in vivo. Relative to the wild-type promoter, the mutations resulted in as little as a 4-fold decrease to as much as a 357-fold decrease in his expression, with the largest decreases resulting from changes in the most highly conserved features of E sigma 70 promoters.

Full text

PDF
6330

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper M. D., Ames B. N. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol. 1978 Jan;133(1):149–157. doi: 10.1128/jb.133.1.149-157.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Artz S., Holzschu D., Blum P., Shand R. Use of M13mp phages to study gene regulation, structure and function: cloning and recombinational analysis of genes of the Salmonella typhimurium histidine operon. Gene. 1983 Dec;26(2-3):147–158. doi: 10.1016/0378-1119(83)90184-1. [DOI] [PubMed] [Google Scholar]
  3. Berman M. L., Beckwith J. Use of gene fusions to isolate promoter mutants in the transfer RNA gene tyrT of Escherichia coli. J Mol Biol. 1979 May 25;130(3):303–315. doi: 10.1016/0022-2836(79)90543-6. [DOI] [PubMed] [Google Scholar]
  4. Blasi F., Bruni C. B. Regulation of the histidine operon: translation-controlled transcription termination (a mechanism common to several biosynthetic operons). Curr Top Cell Regul. 1981;19:1–45. doi: 10.1016/b978-0-12-152819-5.50018-x. [DOI] [PubMed] [Google Scholar]
  5. Blum P., Blaha L., Artz S. Reversion and immobilization of phage Mud1 cts (Apr lac) insertion mutations in Salmonella typhimurium. Mol Gen Genet. 1986 Feb;202(2):327–330. doi: 10.1007/BF00331659. [DOI] [PubMed] [Google Scholar]
  6. Blum P., Holzschu D., Kwan H. S., Riggs D., Artz S. Gene replacement and retrieval with recombinant M13mp bacteriophages. J Bacteriol. 1989 Jan;171(1):538–546. doi: 10.1128/jb.171.1.538-546.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caspers P., Dalrymple B., Iida S., Arber W. IS30, a new insertion sequence of Escherichia coli K12. Mol Gen Genet. 1984;196(1):68–73. doi: 10.1007/BF00334094. [DOI] [PubMed] [Google Scholar]
  8. Dalrymple B., Caspers P., Arber W. Nucleotide sequence of the prokaryotic mobile genetic element IS30. EMBO J. 1984 Sep;3(9):2145–2149. doi: 10.1002/j.1460-2075.1984.tb02104.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freedman R., Schimmel P. In vitro transcription of the histidine operon. Identification of the his promoter and leader and readthrough transcripts. J Biol Chem. 1981 Nov 10;256(21):10747–10750. [PubMed] [Google Scholar]
  10. Frunzio R., Bruni C. B., Blasi F. In vivo and in vitro detection of the leader RNA of the histidine operon of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1981 May;78(5):2767–2771. doi: 10.1073/pnas.78.5.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartman P. E., Hartman Z., Stahl R. C. Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genet. 1971;16:1–34. doi: 10.1016/s0065-2660(08)60352-1. [DOI] [PubMed] [Google Scholar]
  13. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hopkins J. D. A new class of promoter mutations in the lactose operon of Escherichia coli. J Mol Biol. 1974 Aug 25;87(4):715–724. doi: 10.1016/0022-2836(74)90080-1. [DOI] [PubMed] [Google Scholar]
  15. Koo H. S., Wu H. M., Crothers D. M. DNA bending at adenine . thymine tracts. Nature. 1986 Apr 10;320(6062):501–506. doi: 10.1038/320501a0. [DOI] [PubMed] [Google Scholar]
  16. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  17. Mulligan M. E., Hawley D. K., Entriken R., McClure W. R. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):789–800. doi: 10.1093/nar/12.1part2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murray M. L., Hartman P. E. Overproduction of hisH and hisF gene products leads to inhibition of cell cell division in Salmonella. Can J Microbiol. 1972 May;18(5):671–681. doi: 10.1139/m72-105. [DOI] [PubMed] [Google Scholar]
  19. O'Connor M. B., Malamy M. H. A new insertion sequence, IS121, is found on the Mu dI1 (Ap lac) bacteriophage and the Escherichia coli K-12 chromosome. J Bacteriol. 1983 Nov;156(2):669–679. doi: 10.1128/jb.156.2.669-679.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reznikoff W. S., Siegele D. A., Cowing D. W., Gross C. A. The regulation of transcription initiation in bacteria. Annu Rev Genet. 1985;19:355–387. doi: 10.1146/annurev.ge.19.120185.002035. [DOI] [PubMed] [Google Scholar]
  21. Riggs D. L., Mueller R. D., Kwan H. S., Artz S. W. Promoter domain mediates guanosine tetraphosphate activation of the histidine operon. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9333–9337. doi: 10.1073/pnas.83.24.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosen E. D., Hartley J. L., Matz K., Nichols B. P., Young K. M., Donelson J. E., Gussin G. N. DNA sequence analysis of prm-mutations of coliphage lambda. Gene. 1980 Nov;11(3-4):197–205. doi: 10.1016/0378-1119(80)90060-8. [DOI] [PubMed] [Google Scholar]
  23. Rudd K. E., Bochner B. R., Cashel M., Roth J. R. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol. 1985 Aug;163(2):534–542. doi: 10.1128/jb.163.2.534-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shand R. F., Blum P. H., Mueller R. D., Riggs D. L., Artz S. W. Correlation between histidine operon expression and guanosine 5'-diphosphate-3'-diphosphate levels during amino acid downshift in stringent and relaxed strains of Salmonella typhimurium. J Bacteriol. 1989 Feb;171(2):737–743. doi: 10.1128/jb.171.2.737-743.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siebenlist U., Simpson R. B., Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell. 1980 Jun;20(2):269–281. doi: 10.1016/0092-8674(80)90613-3. [DOI] [PubMed] [Google Scholar]
  26. Stephens J. C., Artz S. W., Ames B. N. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4389–4393. doi: 10.1073/pnas.72.11.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Straus D. S., Wyche J. H. Histidine regulation in Salmonella typhimurium. XV. Procedure for the selection of mutants unable to derepress the histidine operon. J Bacteriol. 1974 Jan;117(1):116–125. doi: 10.1128/jb.117.1.116-125.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Winkler M. E., Zawodny R. V., Hartman P. E. Mutation spoT of Escherichia coli increases expression of the histidine operon deleted for the attenuator. J Bacteriol. 1979 Sep;139(3):993–1000. doi: 10.1128/jb.139.3.993-1000.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES