Abstract
The growth response of Saccharomyces cerevisiae to arsenite and arsenate and the relationship between the enhancement of heat shock protein (hsp) synthesis caused by these arsenic oxides and thermotolerance are reported. Arsenite and arsenate transiently inhibited cell growth and overall protein synthesis; arsenate enhanced the synthesis of the 42-, 74-, 84-, and 100-kilodalton hsps, whereas arsenite enhanced synthesis of only the 74-kilodalton hsp. The induction of these hsps reached a maximum 45 min following metal oxide treatment and then declined. A delayed thermotolerance peaked 4 h after metal oxide addition, at which time cell growth and protein synthesis were recovering. These data show that the arsenate- and arsenite-induced thermotolerance in S. cerevisiae cells does not appear to be causally related to either hsp synthesis or cell cycle arrest.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boucherie H. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. J Bacteriol. 1985 Jan;161(1):385–392. doi: 10.1128/jb.161.1.385-392.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iida H., Yahara I. Durable synthesis of high molecular weight heat shock proteins in G0 cells of the yeast and other eucaryotes. J Cell Biol. 1984 Jul;99(1 Pt 1):199–207. doi: 10.1083/jcb.99.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iida H., Yahara I. Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the G0 of higher eucaryotes. J Cell Biol. 1984 Apr;98(4):1185–1193. doi: 10.1083/jcb.98.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. J., Shuman J., Sette M., Przybyla A. Arsenate induces stress proteins in cultured rat myoblasts. J Cell Biol. 1983 Feb;96(2):393–400. doi: 10.1083/jcb.96.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li G. C. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol. 1983 May;115(2):116–122. doi: 10.1002/jcp.1041150203. [DOI] [PubMed] [Google Scholar]
- Ludwig J. R., 2nd, Foy J. J., Elliott S. G., McLaughlin C. S. Synthesis of specific identified, phosphorylated, heat shock, and heat stroke proteins through the cell cycle of Saccharomyces cerevisiae. Mol Cell Biol. 1982 Feb;2(2):117–126. doi: 10.1128/mcb.2.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAlister L., Finkelstein D. B. Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun. 1980 Apr 14;93(3):819–824. doi: 10.1016/0006-291x(80)91150-x. [DOI] [PubMed] [Google Scholar]
- Neidhardt F. C., VanBogelen R. A., Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. doi: 10.1146/annurev.ge.18.120184.001455. [DOI] [PubMed] [Google Scholar]
- Nour-Eldeen A. F., Craig M. M., Gresser M. J. Interaction of inorganic vanadate with glucose-6-phosphate dehydrogenase. Nonenzymic formation of glucose 6-vanadate. J Biol Chem. 1985 Jun 10;260(11):6836–6842. [PubMed] [Google Scholar]
- Plesset J., Palm C., McLaughlin C. S. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1340–1345. doi: 10.1016/0006-291x(82)92147-7. [DOI] [PubMed] [Google Scholar]
- Singh A., Sherman F. Genetic and physiological characterization of met15 mutants of Saccharomyces cerevisiae: a selective system for forward and reverse mutations. Genetics. 1975 Sep;81(1):75–97. doi: 10.1093/genetics/81.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanguay R. M. Genetic regulation during heat shock and function of heat-shock proteins: a review. Can J Biochem Cell Biol. 1983 Jun;61(6):387–394. doi: 10.1139/o83-053. [DOI] [PubMed] [Google Scholar]
- Weitzel G., Pilatus U., Rensing L. The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Exp Cell Res. 1987 May;170(1):64–79. doi: 10.1016/0014-4827(87)90117-0. [DOI] [PubMed] [Google Scholar]
- Willsky G. R., Dosch S. F. Vanadium metabolism in wild type and respiratory-deficient strains of S. cerevisiae. Yeast. 1986 Jun;2(2):77–85. doi: 10.1002/yea.320020202. [DOI] [PubMed] [Google Scholar]
- Willsky G. R., Leung J. O., Offermann P. V., Jr, Plotnick E. K., Dosch S. F. Isolation and characterization of vanadate-resistant mutants of Saccharomyces cerevisiae. J Bacteriol. 1985 Nov;164(2):611–617. doi: 10.1128/jb.164.2.611-617.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]