Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Dec;171(12):6493–6502. doi: 10.1128/jb.171.12.6493-6502.1989

Effect of variation of charged and uncharged tRNA(Trp) levels on ppGpp synthesis in Escherichia coli.

M V Rojiani 1, H Jakubowski 1, E Goldman 1
PMCID: PMC210538  PMID: 2687238

Abstract

We introduced into a stringent Escherichia coli tryptophan auxotroph a plasmid bearing the tRNA(Trp) gene under the control of an inducible promoter. This allows us to manipulate the total concentration of tRNA(Trp) in the cell according to whether and when inducer is added to the culture. We also manipulated the concentration of Trp-tRNA(Trp) in vivo since the strain used bears a mutation in the Trp-tRNA synthetase affecting the Km for tryptophan, such that varying the exogenous concentration of tryptophan led to variation in the level of Trp-tRNA(Trp) in the cell. With this system, we found that the signal eliciting ppGpp synthesis during a stringent response triggered by tryptophan limitation did not depend on the absolute concentration of either charged or uncharged tRNA(Trp) but rather depended on a decline in the ratio of charged/uncharged tRNA(Trp). In addition, we found that the amplitude of the response, once triggered by tryptophan limitation, was determined by the total concentration of tRNA(Trp) present in the cell (which is mostly uncharged at that point in time). However, excess uncharged tRNA(Trp) did not amplify ppGpp synthesis triggered by limitation of a different amino acid. These data provide in vivo support for the in vitro-derived model of ppGpp synthesis on ribosomes.

Full text

PDF
6493

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bech F. W., Jørgensen S. T., Diderichsen B., Karlström O. H. Sequence of the relB transcription unit from Escherichia coli and identification of the relB gene. EMBO J. 1985 Apr;4(4):1059–1066. doi: 10.1002/j.1460-2075.1985.tb03739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bochner B. R., Ames B. N. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
  3. Calos M. P. DNA sequence for a low-level promoter of the lac repressor gene and an 'up' promoter mutation. Nature. 1978 Aug 24;274(5673):762–765. doi: 10.1038/274762a0. [DOI] [PubMed] [Google Scholar]
  4. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  5. Diderichsen B., Fiil N. P., Lavallé R. Genetics of the relB locus in Escherichia coli. J Bacteriol. 1977 Jul;131(1):30–33. doi: 10.1128/jb.131.1.30-33.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doolittle W. F., Yanofsky C. Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase. J Bacteriol. 1968 Apr;95(4):1283–1294. doi: 10.1128/jb.95.4.1283-1294.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fiil N. P., von Meyenburg K., Friesen J. D. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):769–783. doi: 10.1016/s0022-2836(72)80037-8. [DOI] [PubMed] [Google Scholar]
  8. Fill N. A functional analysis of the rel gene in Escherichia coli. J Mol Biol. 1969 Oct 28;45(2):195–203. doi: 10.1016/0022-2836(69)90099-0. [DOI] [PubMed] [Google Scholar]
  9. Folk W. R., Berg P. Characterization of altered forms of glycyl transfer ribonucleic acid synthetase and the effects of such alterations on aminoacyl transfer ribonucleic acid synthesis in vivo. J Bacteriol. 1970 Apr;102(1):204–212. doi: 10.1128/jb.102.1.204-212.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friesen J. D., Fiil N. P., Parker J. M., Haseltine W. A. A new relaxed mutant of Escherichia coli with an altered 50S ribosomal subunit. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3465–3469. doi: 10.1073/pnas.71.9.3465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallant J. A. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
  12. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jakubowski H., Goldman E. Quantities of individual aminoacyl-tRNA families and their turnover in Escherichia coli. J Bacteriol. 1984 Jun;158(3):769–776. doi: 10.1128/jb.158.3.769-776.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakubowski H. Incomplete aminoacylation of tRNALeu catalyzed in vitro by leucyl-tRNA synthetase from Escherichia coli B. Biochim Biophys Acta. 1978 Apr 27;518(2):345–350. doi: 10.1016/0005-2787(78)90191-0. [DOI] [PubMed] [Google Scholar]
  15. Jakubowski H. Sporulation of the yeast Saccharomyces cerevisiae is accompanied by synthesis of adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2378–2382. doi: 10.1073/pnas.83.8.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaplan S., Atherly A. G., Barrett A. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA. Proc Natl Acad Sci U S A. 1973 Mar;70(3):689–692. doi: 10.1073/pnas.70.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koontz S. W., Jakubowski H., Goldman E. Control of RNA and protein synthesis by the concentration of Trp-tRNATrp in Escherichia coli infected with bacteriophage MS2. J Mol Biol. 1983 Aug 25;168(4):747–763. doi: 10.1016/s0022-2836(83)80073-4. [DOI] [PubMed] [Google Scholar]
  18. LEAVITT R. I., UMBARGER H. E. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12. J Bacteriol. 1962 Mar;83:624–630. doi: 10.1128/jb.83.3.624-630.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lewis J. A., Ames B. N. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA His charged in vivo and its relation to the repression of the histidine operon. J Mol Biol. 1972 Apr 28;66(1):131–142. doi: 10.1016/s0022-2836(72)80011-1. [DOI] [PubMed] [Google Scholar]
  20. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ogawa Y., Sy J. Synthesis of guanosine polyphosphates (pppGpp and ppGpp) and its regulation by aminoacyl-tRNA. J Biochem. 1977 Oct;82(4):947–953. doi: 10.1093/oxfordjournals.jbchem.a131798. [DOI] [PubMed] [Google Scholar]
  23. Pedersen F. S., Lund E., Kjeldgaard N. O. Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nat New Biol. 1973 May 2;243(122):13–15. [PubMed] [Google Scholar]
  24. Richter D. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA. Proc Natl Acad Sci U S A. 1976 Mar;73(3):707–711. doi: 10.1073/pnas.73.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rudd K. E., Bochner B. R., Cashel M., Roth J. R. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol. 1985 Aug;163(2):534–542. doi: 10.1128/jb.163.2.534-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siehnel R. J., Morgan E. A. Unbalanced rRNA gene dosage and its effects on rRNA and ribosomal-protein synthesis. J Bacteriol. 1985 Aug;163(2):476–486. doi: 10.1128/jb.163.2.476-486.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sigmund C. D., Morgan E. A. Effects of Escherichia coli Nus A protein on transcription termination in vitro are not increased or decreased by DNA sequences sufficient for antitermination in vivo. Biochemistry. 1988 Jul 26;27(15):5628–5635. doi: 10.1021/bi00415a035. [DOI] [PubMed] [Google Scholar]
  28. Squires C. L., Rose J. K., Yanofsky C., Yang H. L., Zubay G. Tryptophanyl-tRNA and tryptophanyl-tRNA synthetase are not required for in vitro repression of the tryptophan operon. Nat New Biol. 1973 Oct 3;245(144):131–133. doi: 10.1038/newbio245131a0. [DOI] [PubMed] [Google Scholar]
  29. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  30. Womble D. D., Dong X., Wu R. P., Luckow V. A., Martinez A. F., Rownd R. H. IncFII plasmid incompatibility product and its target are both RNA transcripts. J Bacteriol. 1984 Oct;160(1):28–35. doi: 10.1128/jb.160.1.28-35.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yanofsky C., Kelley R. L., Horn V. Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe. J Bacteriol. 1984 Jun;158(3):1018–1024. doi: 10.1128/jb.158.3.1018-1024.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yanofsky C. Mutations affecting tRNATrp and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. J Mol Biol. 1977 Jul 15;113(4):663–677. doi: 10.1016/0022-2836(77)90229-7. [DOI] [PubMed] [Google Scholar]
  33. de Boer H. A., Comstock L. J., Vasser M. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A. 1983 Jan;80(1):21–25. doi: 10.1073/pnas.80.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES