Abstract
Cytoplasmic membrane vesicles isolated from the gram-negative photosynthetic bacterium Rhodobacter capsulatus catalyzed the transport of nucleotides. No transport occurred in the intact bacteria unless they were pretreated with EDTA. The transport rate was measured by incorporation of radioactive phosphate into externally added ADP or by incorporation of nonradioactive phosphate into added labeled ADP. The catalytic activities which utilized the added ADP were photosynthetic ATP synthesis, Pi-ADP exchange, and adenylate kinase. These activities were shown to occur on the cytoplasmic side of the internal membrane. The products were found in the outer medium. The rate of nucleotide transport across the membranes was comparable to the rate of photophosphorylation. These results indicated that nucleotides can be transported across the cytoplasmic membrane but not across the outer membrane of the native R. capsulatus cell. Therefore, by analogy to the mitochondrial ATP-ADP translocator, the exchange might function as an energy transfer system to the periplasm of these bacteria.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Flammann H. T., Weckesser J. Porin isolated from the cell envelope of Rhodopseudomonas capsulata. J Bacteriol. 1984 Jul;159(1):410–412. doi: 10.1128/jb.159.1.410-412.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock R. E. Alterations in outer membrane permeability. Annu Rev Microbiol. 1984;38:237–264. doi: 10.1146/annurev.mi.38.100184.001321. [DOI] [PubMed] [Google Scholar]
- Hatch T. P., Al-Hossainy E., Silverman J. A. Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol. 1982 May;150(2):662–670. doi: 10.1128/jb.150.2.662-670.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochman A., Bittan R., Carmeli C. Nucleotide exchange in membrane vesicles from the photosynthetic bacterium Rhodopseudomonas capsulata. Arch Biochem Biophys. 1981 Oct 1;211(1):413–418. doi: 10.1016/0003-9861(81)90472-0. [DOI] [PubMed] [Google Scholar]
- Hochman A., Bittan R., Carmeli C. Nucleotide translocation across the cytoplasmic membrane in the photosynthetic bacterium Rhodopseudomonas capsulata. FEBS Lett. 1978 May 1;89(1):21–25. doi: 10.1016/0014-5793(78)80513-4. [DOI] [PubMed] [Google Scholar]
- Hochman A., Carmeli C. Reconstitution of photosynthetic electron transport and photophosphorylation in cytochrome-c2-deficient membrane preparation of Rhodopseudomonas capsulata. Arch Biochem Biophys. 1977 Feb;179(1):349–359. doi: 10.1016/0003-9861(77)90121-7. [DOI] [PubMed] [Google Scholar]
- Hochman A., Fridberg I., Carmeli C. The location and function of cytochrome c2 in Rhodopseudomonas capsulate membranes. Eur J Biochem. 1975 Oct 1;58(1):65–72. doi: 10.1111/j.1432-1033.1975.tb02349.x. [DOI] [PubMed] [Google Scholar]
- Hochman A., Gen-Hayyim G., Carmeli C. Light-induced electron transport pathways in membrane preparations from Rhodopseudomonas capsulata. Arch Biochem Biophys. 1977 Dec;184(2):416–422. doi: 10.1016/0003-9861(77)90451-9. [DOI] [PubMed] [Google Scholar]
- Kaufmann G., Littauer U. Z. Phosphorolysis of aminoacyl-tRNA by polynucleotide phosphorylase from Escherichia coli. Eur J Biochem. 1970 Jan;12(1):85–92. doi: 10.1111/j.1432-1033.1970.tb00824.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nakae T. Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J Biol Chem. 1976 Apr 10;251(7):2176–2178. [PubMed] [Google Scholar]
- Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruby E. G., McCabe J. B. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J. J Bacteriol. 1986 Sep;167(3):1066–1070. doi: 10.1128/jb.167.3.1066-1070.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SUGINO Y., MIYOSHI Y. THE SPECIFIC PRECIPITATION OF ORTHOPHOSPHATE AND SOME BIOCHEMICAL APPLICATIONS. J Biol Chem. 1964 Jul;239:2360–2364. [PubMed] [Google Scholar]
- Tisa L. S., Ensign J. C. Evidence for adenylate nucleotide transport (ATP-ADP translocation) in vesicles of Frankia sp. strain EAN1pec. J Bacteriol. 1988 Jul;170(7):3053–3057. doi: 10.1128/jb.170.7.3053-3057.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler H. H. Rickettsial permeability. An ADP-ATP transport system. J Biol Chem. 1976 Jan 25;251(2):389–396. [PubMed] [Google Scholar]
- Yagil E., Beacham I. R. Uptake of adenosine 5'-monophosphate by Escherichia coli. J Bacteriol. 1975 Feb;121(2):401–405. doi: 10.1128/jb.121.2.401-405.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagil E., Silberstein N., Gerdes R. G. Co-regulation of the phosphate-binding protein and alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1976 Jul;127(1):656–659. doi: 10.1128/jb.127.1.656-659.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
