Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Jan 1;12(1):149–157. doi: 10.1083/jcb.12.1.149

CYTODIFFERENTIATION IN THE ROSY MUTANT OF DROSOPHILA MELANOGASTER

T M Rizki 1, Rose M Rizki 1
PMCID: PMC2106006  PMID: 14492629

Abstract

In the rosy mutant of Drosophila melanogaster, two types of autofluorescent cytoplasmic inclusions are found in the cells of the posterior region of the fatbody at the prepupal stage. Bright yellow autofluorescent granules accumulating within larger inclusions clearly demarcate this area of the fatbody which also contains cobalt blue fluorescent globular material. Such inclusions were not noted in the normal Ore-R strain at this stage nor in the series of mutant strains examined other than the rosy 2 and maroon-like mutants. The pattern of biochemical deviation of the latter two mutants is known to be identical to that of the rosy mutant, and a portion of this mutant upset can be ascribed to the absence of xanthine dehydrogenase. These mutants lack the products of enzyme activity, uric acid and isoxanthopterin, and accumulate their precursors, hypoxanthine and 2-amino-4-hydroxypteridine. Chromatographic studies on the fatbody of rosy prepupae have shown that 2-amino-4-hydroxypteridine is limited to the posterior region; this correspondence in location as well as color of fluorescence indicates that the cobalt blue auto fluorescent globules in the fatbody contain 2-amino-4-hydroxypteridine. In the normal strain, isoxanthopterin was identified in the chromatograms of the posterior region of the fatbody, but it was not obtained from the anterior region of the fatbody. On the other hand, xanthine dehydrogenase activity could be demonstrated throughout the fatbody of the normal strain. The restriction of isoxanthopterin to a certain group of fat cells in the wild type strain and its absence from other fat cells can be explained by the differential distribution of its immediate precursor, 2-amino-4-hydroxypteridine, as displayed in the mutant rosy.

Full Text

The Full Text of this article is available as a PDF (738.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FORREST H. S., GLASSMAN E., MITCHELL H. K. Conversion of 2-amino-4-hydroxypteridine to isoxanthopterin in D. Melanogaster. Science. 1956 Oct 19;124(3225):725–726. doi: 10.1126/science.124.3225.725. [DOI] [PubMed] [Google Scholar]
  2. GOLDSCHMIDT E., HADORN E. Host-transplant interactions in biosynthesis of Drosophilia pteridines. J Embryol Exp Morphol. 1959 Sep;7:316–329. [PubMed] [Google Scholar]
  3. Glassman E, Mitchell H K. Maternal Effect of Ma-L on Xanthine Dehydrogenase of Drosophila Melanogaster. Genetics. 1959 Jul;44(4):547–554. doi: 10.1093/genetics/44.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glassman E, Mitchell H K. Mutants of Drosophila Melanogaster Deficient in Xanthine Dehydrogenase. Genetics. 1959 Mar;44(2):153–162. doi: 10.1093/genetics/44.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HADORN E., SCHWINCK I. Fehlen von Isoxanthopterin und Nicht-Autonomie in der Bildung der roten Augenpigmente bei einer Mutante (rosy2) von Drosophila melanogaster. Z Indukt Abstamm Vererbungsl. 1956;87(4):528–553. [PubMed] [Google Scholar]
  6. HADORN E., ZIEGLER-GUNDER I. Untersuchungen zur Entwicklung, Geschlechtsspezifität und phänogenetischen Autonomie der Augen-Pterine verschiedener Genotypen von Drosophila melanogaster. Z Vererbungsl. 1958;89(2):221–234. [PubMed] [Google Scholar]
  7. HANDSCHIN G. [Development and organ-specific distribution pattern of pterins in a wild strain and in the rosy-2 mutant of Drosophila melanogaster]. Dev Biol. 1961 Apr;3:115–139. doi: 10.1016/0012-1606(61)90001-x. [DOI] [PubMed] [Google Scholar]
  8. Hadorn E., Mitchell H. K. Properties of Mutants of Drosophila Melanogaster and Changes During Development as Revealed by Paper Chromatography. Proc Natl Acad Sci U S A. 1951 Oct;37(10):650–665. doi: 10.1073/pnas.37.10.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hubby J L, Forrest H S. Studies on the Mutant Maroon-like in Drosophila Melanogaster. Genetics. 1960 Feb;45(2):211–224. doi: 10.1093/genetics/45.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MITCHELL H. K., GLASSMAN E. Hypoxanthine in rosy and maroon-like mutants of Drosophila melanogaster. Science. 1959 Jan 30;129(3344):268–268. doi: 10.1126/science.129.3344.268. [DOI] [PubMed] [Google Scholar]
  11. NOVIKOFF A. B. Cell heterogeneity within the hepatic lobule of the rat: staining reactions. J Histochem Cytochem. 1959 Jul;7(4):240–244. doi: 10.1177/7.4.240. [DOI] [PubMed] [Google Scholar]
  12. RIZKI M. T. Intracellular localization of kynurenine in the fatbody of Drosophila. J Biophys Biochem Cytol. 1961 Mar;9:567–572. doi: 10.1083/jcb.9.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RIZKI M. T. Melanotic tumor ormation in Drosophila. J Morphol. 1960 Mar;106:147–157. doi: 10.1002/jmor.1051060203. [DOI] [PubMed] [Google Scholar]
  14. SHANK R. E., MORRISON G., CHENG C. H., KARL I., SCHWARTZ R. Cell heterogeneity within the hepatic lobule: quantitative histochemistry. J Histochem Cytochem. 1959 Jul;7(4):237–239. doi: 10.1177/7.4.237. [DOI] [PubMed] [Google Scholar]
  15. WILSON L. P., KING R. C., LOWRY J. L. Studies on the tuW strain of Drosophila melanogaster. I. Phenotypic and genotypic characterization. Growth. 1955 Sep;19(3):215–244. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES