Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Jan 1;12(1):115–133. doi: 10.1083/jcb.12.1.115

CHEMICAL AND MORPHOLOGICAL STUDIES OF BACTERIAL SPORE FORMATION

IV. The Development of Spore Refractility

I Elizabeth Young 1, Philip C Fitz-James 1
PMCID: PMC2106011  PMID: 14009347

Abstract

From the stage of a completed membranous forespore to that of a fully ripened free spore, synchronously sporulating cells of a variant Bacillus cereus were studied by cytological and chemical methods. Particular attention was paid to the development of the three spore layers—cortex, coat, and exosporium—in relation to the forespore membrane. First, the cortex is laid down between the recently described (5) double layers of the forespore membrane. Then when the cortex is ⅓ fully formed, the spore coat and exosporium are laid down peripheral to the outer membrane layer covering the cortex. As these latter layers appear, the spores, previously dense by dark phase contrast, gradually "whiten" or show an increase in refractive index. With this whitening, calcium uptake commences, closely followed by the synthesis of dipicolinic acid and the process is terminated, an hour later, with the formation of a fully refractile spore. In calcium-deficient media, final refractility is lessened and dipicolinic acid is formed only in amounts proportional to the available calcium. If calcium is withheld during the period of uptake beyond a critical point, sporulating cells lose the ability to assimilate calcium and to form normal amounts of dipicolinic acid. The resulting deficient spores are liberated from the sporangia but are unstable in water suspensions. Unlike ripe spores, they do not react violently to acid hydrolysis and, in thin sections, their cytoplasmic granules continue to stain with lead solutions.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK S. H., HASHIMOTO T., GERHARDT P. Calcium reversal of the heat susceptibility and dipicolinate deficiency of spores formed "endotrophically" in water. Can J Microbiol. 1960 Apr;6:213–224. doi: 10.1139/m60-023. [DOI] [PubMed] [Google Scholar]
  2. CHAPMAN G. B. Electron microscope observations on the behavior of the bacterial cytoplasmic membrane during cellular division. J Biophys Biochem Cytol. 1959 Oct;6:221–224. doi: 10.1083/jcb.6.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DALTON A. J., ZEIGEL R. F. A simplified method of staining thin sections of biolgical material with lead hydroxide for electron microscopy. J Biophys Biochem Cytol. 1960 Apr;7:409–410. doi: 10.1083/jcb.7.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FITZ-JAMES P. C., YOUNG I. E. Comparison of species and yarieties of the genus Bacillus. Structure and nucleic acid content of spores. J Bacteriol. 1959 Dec;78:743–754. doi: 10.1128/jb.78.6.743-754.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  6. HOLBERT P. E. An effective method of preparing sections of Bacillus polymyxa sporangia and spores for electron microscopy. J Biophys Biochem Cytol. 1960 Apr;7:373–376. doi: 10.1083/jcb.7.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. POWELL J. F., STRANGE R. E. Biochemical changes occurring during sporulation in Bacillus species. Biochem J. 1956 Aug;63(4):661–668. doi: 10.1042/bj0630661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. POWELL J. F., STRANGE R. E. Biochemical changes occurring during the germination of bacterial spores. Biochem J. 1953 May;54(2):205–209. doi: 10.1042/bj0540205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ROBINOW C. F. Observations on the nucleus of resting and germinating spores of Bacillus megaterium. J Bacteriol. 1953 Apr;65(4):378–382. doi: 10.1128/jb.65.4.378-382.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TOKUYASU K., YAMADA E. Fine structure of Bacillus subtilis. II. Sporulation progress. J Biophys Biochem Cytol. 1959 Jan 25;5(1):129–134. doi: 10.1083/jcb.5.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958 Nov 25;4(6):727–730. doi: 10.1083/jcb.4.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES