Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Feb 1;12(2):297–312. doi: 10.1083/jcb.12.2.297

RESTITUTION OF PANCREATIC ACINAR CELLS FOLLOWING ETHIONINE

Lawrence Herman 1, Patrick J Fitzgerald 1
PMCID: PMC2106022  PMID: 13906693

Abstract

The regeneration of the pancreatic acinar cell was studied at four time periods after ethionine had destroyed most of the acinar cells. Within 2 days of the last ethionine injection, small basophilic cells (pre-acinar cells) with whorls of ergastoplasm or nebenkern were present. These cells also contained a decreased amount of Golgi substance, small zymogen granules, and a fine granularity of the nuclear matrix. They showed persistence of the characteristic ergastoplasm lesion produced by ethionine. Eight days after the last ethionine injection, the nebenkern was replaced by approximately normal appearing ergastoplasm and the nucleoli and Golgi bodies were enlarged. Zymogen granules were less dense but more abundant. Mitochondria were considerably enlarged. Most cells showed no ethionine lesions or only small foci of damage. Eighteen days after the cessation of ethionine, a good approximation of the normal acinar cell was present. The whorls of ergastoplasm appeared at a time (day 12) when basophilia was pronounced. Other studies showed that nucleic acid and protein precursors began to show an increased concentration in acinar cells at this time. The appearance of nebenkern during a phase of cellular recovery and its absence during a phase of replication when mitotic indices were high suggest that its presence is more indicative of ergastoplasmic synthesis than of cell multiplication as such. Possibly the increased density of zymogen granules was a reflection of this increased protein synthesis. The increase in size of Golgi apparatus occurred prior to the replenishment of zymogen granules and thus satisfied a precursor relationship for a possible role in the formation of these secretory structures. Evidence suggests that some injured acinar cells recover from the ethionine and protein-free regimen and give rise to most of the new acinar cells formed. It is possible that, under the severe conditions which prevailed, the centroacinar ductule cells may also have given rise to some acinar cells.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FARQUHAR M. G., WELLINGS S. R. Electron microscopic evidence suggesting secretory granule formation within the Golgi apparatus. J Biophys Biochem Cytol. 1957 Mar 25;3(2):319–322. doi: 10.1083/jcb.3.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FITZGERALD P. J., ALVIZOURI M. Rapid restitution of the rat pancreas following acinar cell necrosis subsequent to ethionine. Nature. 1952 Nov 29;170(4335):929–930. doi: 10.1038/170929b0. [DOI] [PubMed] [Google Scholar]
  3. FITZGERALD P. J., EIDINOFF M. L., KNOLL J. E., SIMMEL E. B. Tritium in radioautography. Science. 1951 Nov 9;114(2967):494–498. doi: 10.1126/science.114.2967.494. [DOI] [PubMed] [Google Scholar]
  4. FITZGERALD P. J. The problem of the precursor cell of regenerating pancreatic acinar epithelium. Lab Invest. 1960 Jan-Feb;9:67–85. [PubMed] [Google Scholar]
  5. HERMAN L., FITZGERALD P. J. The degenerative changes in pancreatic acinar cells caused by DL-ethionine. J Cell Biol. 1962 Feb;12:277–296. doi: 10.1083/jcb.12.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KING D. W., SOCOLOW E. L., BENSCH K. G. The relation between protein synthesis and lipide accumulation in L strain cells and Ehrlich ascites cells. J Biophys Biochem Cytol. 1959 May 25;5(3):421–431. doi: 10.1083/jcb.5.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Parker F. Toxic Necrosis and Regeneration of the Acinar Cells of the Pancreas. J Med Res. 1919 Sep;40(3):471–476.3. [PMC free article] [PubMed] [Google Scholar]
  8. SJOSTRAND F. S., HANZON V. Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res. 1954 Nov;7(2):415–429. doi: 10.1016/s0014-4827(54)80087-5. [DOI] [PubMed] [Google Scholar]
  9. STENRAM U. Nucleolar size in the liver of rats fed diets deficient in essential amino acids. Acta Pathol Microbiol Scand. 1956;38(5):364–374. [PubMed] [Google Scholar]
  10. STENRAM U. The nucleolar size in the liver cell of rats fed high and non protein diets. Exp Cell Res. 1953 Dec;5(2):539–541. doi: 10.1016/0014-4827(53)90241-9. [DOI] [PubMed] [Google Scholar]
  11. WEISBLUM B., HERMAN L., FITZGERALD P. J. Changes in pancreatic acinar cells during protein deprivation. J Cell Biol. 1962 Feb;12:313–327. doi: 10.1083/jcb.12.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WEISS J. M. The ergastoplasm; its fine structure and relation to protein synthesis as studied with the electron microscope in the pancreas of the Swiss albino mouse. J Exp Med. 1953 Dec;98(6):607–618. doi: 10.1084/jem.98.6.607. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES