Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Feb 1;12(2):329–359. doi: 10.1083/jcb.12.2.329

THE FINE STRUCTURE OF ACOUSTIC GANGLIA IN THE RAT

Jack Rosenbluth 1
PMCID: PMC2106033  PMID: 14493992

Abstract

Nerve cell bodies in the spiral and vestibular ganglia of the adult rat are surrounded by thin (about ten lamellae) myelin sheaths which differ in several respects from typical axonal myelin. In some instances lamellae surrounding perikarya appear as typical major dense lines, and in others as thin Schwann cell sheets in which cytoplasm persists. Discontinuities and irregularities appear in the structure of perikaryal myelin. Lamellae may terminate anywhere within the sheaths; they may bifurcate; they may reverse their direction; or they may merge with each other. The number of lamellae varies from one part of a sheath to another. In addition, the myelin of a single perikaryal sheath may receive contributions from more than one Schwann cell, which overlap and interleave with each other. The ganglion cells are of two types: those which are densely packed with the usual cytoplasmic organelles but have few neurofilaments (granular neurons), and those which exhibit large areas containing few organelles but have a high concentration of neurofilaments (filamented neurons). The latter cell type is ensheathed by myelin which is generally more compact that that surrounding the former. The formation and the physiologic significance of perikaryal myelin are discussed.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTOPOL W., COWEN D., WOLF A. Reduction of neotetrazolium in the satellite cells of the cerebrospinal and sympathetic ganglia. J Neuropathol Exp Neurol. 1956 Oct;15(4):384–399. doi: 10.1097/00005072-195610000-00003. [DOI] [PubMed] [Google Scholar]
  2. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  3. CAMMERMEYER J. The post-mortem origin and mechanism of neuronal hyperchromatosis and nuclear pyknosis. Exp Neurol. 1960 Aug;2:379–405. doi: 10.1016/0014-4886(60)90022-4. [DOI] [PubMed] [Google Scholar]
  4. DE ROBERTIS E., GERSCHENFELD H. M., WALD F. Cellular mechanism of myelination in the central nervous system. J Biophys Biochem Cytol. 1958 Sep 25;4(5):651–656. doi: 10.1083/jcb.4.5.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ENGSTROM H. On the double innervation of the sensory epithelia of the inner ear. Acta Otolaryngol. 1958 Mar-Apr;49(2):109–118. [PubMed] [Google Scholar]
  6. FERNANDEZ-MORAN H., FINEAN J. B. Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath. J Biophys Biochem Cytol. 1957 Sep 25;3(5):725–748. doi: 10.1083/jcb.3.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GASSER H. S. Properties of dorsal root unmedullated fibers on the two sides of the ganglion. J Gen Physiol. 1955 May 20;38(5):709–728. doi: 10.1085/jgp.38.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GAVIN M. A., LLOYD B. J., Jr Knives of high silica content glass for thin-sectioning. J Biophys Biochem Cytol. 1959 May 25;5(3):507–507. doi: 10.1083/jcb.5.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  11. Geren B. B., Schmitt F. O. THE STRUCTURE OF THE SCHWANN CELL AND ITS RELATION TO THE AXON IN CERTAIN INVERTEBRATE NERVE FIBERS. Proc Natl Acad Sci U S A. 1954 Sep;40(9):863–870. doi: 10.1073/pnas.40.9.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAMA K. Some observations on the fine structure of the giant nerve fibers of the earthworm, Eisenia foetida. J Biophys Biochem Cytol. 1959 Aug;6(1):61–66. doi: 10.1083/jcb.6.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODLER J., STAMPFLI R., TASAKI I. Role of potential wave spreading along myelinated nerve fiber in exictation and conduction. Am J Physiol. 1952 Aug;170(2):375–389. doi: 10.1152/ajplegacy.1952.170.2.375. [DOI] [PubMed] [Google Scholar]
  14. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PALAY S. L., McGEE-RUSSELL S. M., GORDON S., Jr, GRILLO M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol. 1962 Feb;12:385–410. doi: 10.1083/jcb.12.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. POTANOS J. N., WOLF A., COWEN D. Cytochemical localization of oxidative enzymes in human nerve cells and neuroglia. J Neuropathol Exp Neurol. 1959 Oct;18:627–635. doi: 10.1097/00005072-195910000-00015. [DOI] [PubMed] [Google Scholar]
  17. ROBERTSON J. D. New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1043–1048. doi: 10.1083/jcb.3.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROBERTSON J. D. Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J Biophys Biochem Cytol. 1958 Jul 25;4(4):349–364. doi: 10.1083/jcb.4.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROBERTSON J. D. The ultrastructure of Schmidt-Lanterman clefts and related shearing defects of the myelin sheath. J Biophys Biochem Cytol. 1958 Jan 25;4(1):39–46. doi: 10.1083/jcb.4.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
  21. ROSENBLUTH J., PALAY S. L. The fine structure of nerve cell bodies and their myelin sheaths in the eighth nerve ganglion of the goldfish. J Biophys Biochem Cytol. 1961 Apr;9:853–877. doi: 10.1083/jcb.9.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SCHARF J. H. Untersuchungen an markhaltigen Ganglienzellen in der Wirbeltier-reihe und beim Menschen. Anat Anz. 1951;97(Suppl):207–213. [PubMed] [Google Scholar]
  23. TASAKI I. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am J Physiol. 1955 Jun;181(3):639–650. doi: 10.1152/ajplegacy.1955.181.3.639. [DOI] [PubMed] [Google Scholar]
  24. UZMAN B. G., NOGUEIRA-GRAF G. Electron microscope studies of the formation of nodes of Ranvier in mouse sciatic nerves. J Biophys Biochem Cytol. 1957 Jul 25;3(4):589–598. doi: 10.1083/jcb.3.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. VILLEGAS G. M., VILLEGAS R. The ultrastructure of the giant nerve fibre of the squid: axon-Schwann cell relationship. J Ultrastruct Res. 1960 Jun;3:362–373. doi: 10.1016/s0022-5320(60)90015-0. [DOI] [PubMed] [Google Scholar]
  26. VILLEGAS R., VILLEGAS G. M. Characterization of the membranes in the giant nerve fiber of the squid. J Gen Physiol. 1960 May;43:73–103. doi: 10.1085/jgp.43.5.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WEBSTER H. D., SPIRO D. Phase and electron microscopic studies of experimental demyelination. I. Variations in myelin sheath contour in normal guinea pig sciatic nerve. J Neuropathol Exp Neurol. 1960 Jan;19:42–69. [PubMed] [Google Scholar]
  29. WEISS J. M. Mitochondrial changes induced by potassium and sodium in the duodenal absorptive cell as studied with the electron microscope. J Exp Med. 1955 Dec 1;102(6):783–788. doi: 10.1084/jem.102.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES