Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Mar 1;12(3):457–479. doi: 10.1083/jcb.12.3.457

STUDIES ON THE CORNEA

I. The Fine Structure of the Rabbit Cornea and the Uptake and Transport of Colloidal Particles by the Cornea in Vivo

Gordon I Kaye 1, George D Pappas 1
PMCID: PMC2106044  PMID: 14454675

Abstract

Physiological studies have demonstrated that ions, as well as large molecules such as hemoglobin or fluorescein, can diffuse across and within the cornea. Most of the substrates for corneal metabolism are obtained from aqueous humor filling the anterior chamber. In order to receive its nutrients and in order to maintain its normal conditions of hydration, the avascular cornea must transport relatively large amounts of solute and solvent across the cellular layers which cover this structure. It has been suggested in the past that there may be a morphological basis for the transport of large amounts of solvents and solutes by cells by the mechanism of pinocytosis. The use of electron-opaque markers to study fluid movements at the electron microscope magnification level was described by Wissig (29). The present study describes the fine structure of the normal rabbit cornea and the pathways of transport of colloidal particles by the cornea in vivo. Rabbit corneas were exposed in vivo to suspensions of saccharated iron oxide, thorium dioxide, or ferritin by injection of the material into the anterior chamber. In other experiments thorium dioxide or saccharated iron oxide was injected into the corneal stroma, producing a small bleb. Particles presented at the aqueous humor surface of the rabbit corneal endothelium are first attached to the cell surface and then pinocytosed. It appears that the particles are carried around the terminal bar by an intracellular pathway involving the pinocytosis of the particles and their subsequent transport in vesicles to the lateral cell margin basal to the terminal bar. Particles introduced at the basal surface of the endothelium (via blebs in the corneal stroma) are apparently carried through the endothelial cells in membrane-bounded vesicles without appearing in the intercellular space. There appears to be free diffusion of these particles through Descemet's membrane and the corneal stroma. The stromal cells take up large quantities of the particles when blebs are injected into the stroma.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHARLES A., INGRAM J. T. Electron microscope observations of the melanocyte of the human epidermis. J Biophys Biochem Cytol. 1959 Aug;6(1):41–44. doi: 10.1083/jcb.6.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CLARK S. L., Jr The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice. J Biophys Biochem Cytol. 1959 Jan 25;5(1):41–50. doi: 10.1083/jcb.5.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DALTON A. J., FELIX M. D. A comparison of mesothelial cells and macrophages in mice after the intraperitoneal inoculation of melanin granules. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):109–114. doi: 10.1083/jcb.2.4.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVSON H. Some considerations on the salt content of fresh and old ox corneae. Br J Ophthalmol. 1949 Mar;33(3):175–182. doi: 10.1136/bjo.33.3.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAY R. Polysaccharides in ocular tissue. Am J Ophthalmol. 1950 Feb;33(2):224–226. doi: 10.1016/0002-9394(50)90840-3. [DOI] [PubMed] [Google Scholar]
  6. DONN A., MAURICE D. M., MILLS N. L. Studies on the living cornea in vitro. I. Method and physiologic measurements. Arch Ophthalmol. 1959 Nov;62:741–747. doi: 10.1001/archopht.1959.04220050003001. [DOI] [PubMed] [Google Scholar]
  7. DONN A., MAURICE D. M., MILLS N. L. Studies on the living cornea in vitro. II. The active transport of sodium across the epithelium. Arch Ophthalmol. 1959 Nov;62:748–757. doi: 10.1001/archopht.1959.04220050010002. [DOI] [PubMed] [Google Scholar]
  8. FRIEDMAN E., KUPFER C. Transcorneal potential in vivo. Arch Ophthalmol. 1960 Dec;64:892–896. doi: 10.1001/archopht.1960.01840010894010. [DOI] [PubMed] [Google Scholar]
  9. HAMA K. The fine structure of the desmosomes in frog mesothelium. J Biophys Biochem Cytol. 1960 Jun;7:575–578. doi: 10.1083/jcb.7.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JAKUS M. A. Studies on the cornea. I. The fine structure of the rat cornea. Am J Ophthalmol. 1954 Jul;38(12):40–53. [PubMed] [Google Scholar]
  11. KAYE G. I., PAPPAS G. D., DONN A., MALLETT N. Studies on the cornea. II. The uptake and transport of colloidal particles by the living rabbit cornea in vitro. J Cell Biol. 1962 Mar;12:481–501. doi: 10.1083/jcb.12.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KINOSHITA J. H., MASURAT T. Aerobic pathways of glucose metabolism in bovine corneal epithelium. Am J Ophthalmol. 1959 Jul;48(1 Pt 2):47–52. doi: 10.1016/0002-9394(59)90241-7. [DOI] [PubMed] [Google Scholar]
  13. LANGHAM M. E. Glycolysis in the cornea of the rabbit. J Physiol. 1954 Nov 29;126(2):396–403. doi: 10.1113/jphysiol.1954.sp005217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MAURICE D. M. The permeability to sodium ions of the living rabbit's cornea. J Physiol. 1951 Feb;112(3-4):367–391. doi: 10.1113/jphysiol.1951.sp004535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MAURICE D. M. The structure and transparency of the cornea. J Physiol. 1957 Apr 30;136(2):263–286. doi: 10.1113/jphysiol.1957.sp005758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ODLAND G. F. The fine structure of the interrelationship of cells in the human epidermis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):529–538. [PMC free article] [PubMed] [Google Scholar]
  17. ODOR D. L. Uptake and transfer of particulate matter from the peritoneal cavity of the rat. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):105–108. doi: 10.1083/jcb.2.4.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol. 1959 May 25;5(3):363–372. doi: 10.1083/jcb.5.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PIRIE A. The biochemistry of the eye. Nature. 1960 Apr 30;186:352–354. doi: 10.1038/186352a0. [DOI] [PubMed] [Google Scholar]
  20. POTTS A. M., GOODMAN D., JOHNSON L. V. The nutritional supply of corneal regions in experimental animals. III. Further studies on the corneal transport of inorganic ions. Am J Ophthalmol. 1954 Jul;38(12):174–181. doi: 10.1016/0002-9394(54)90022-7. [DOI] [PubMed] [Google Scholar]
  21. SCHWARTZ B., DANES B., LEINFELDER P. J. The role of metabolism in the hydration of the isolated lens and cornea. Am J Ophthalmol. 1954 Jul;38(12):182–193. doi: 10.1016/0002-9394(54)90023-9. [DOI] [PubMed] [Google Scholar]
  22. SHELDON H. An electron microscope study of the epithelium in the normal mature and immature mouse cornea. J Biophys Biochem Cytol. 1956 May 25;2(3):253–262. doi: 10.1083/jcb.2.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SHELDON H., ZETTERQVIST H. An electron microscope study of the corneal epithelium in the vitamin A deficient mouse. Bull Johns Hopkins Hosp. 1956 May;98(5):372–405. [PubMed] [Google Scholar]
  24. SIEKEVITZ P., WATSON M. L. Cytochemical studies of mitochondria. I. The separation and identification of a membrane fraction from isolated mitochondria. J Biophys Biochem Cytol. 1956 Nov 25;2(6):639–652. doi: 10.1083/jcb.2.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SIEKEVITZ P., WATSON M. L. Cytochemical studies of mitochondria. II. Enzymes associated with a mitochondrial membrane fraction. J Biophys Biochem Cytol. 1956 Nov 25;2(6):653–669. doi: 10.1083/jcb.2.6.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SPEAKMAN J. S. Stain permeability and ultrastructure of the corneal endothelium. Arch Ophthalmol. 1959 Nov;62:882–888. doi: 10.1001/archopht.1959.04220050142022. [DOI] [PubMed] [Google Scholar]
  27. WEIMAR V. Activation of corneal stromal cells to take up the vital dye neutral red. Exp Cell Res. 1959 Aug;18:1–14. doi: 10.1016/0014-4827(59)90286-1. [DOI] [PubMed] [Google Scholar]
  28. WEIMAR V. The transformation of corneal stromal cells to fibroblasts in corneal wound healing. Am J Ophthalmol. 1957 Oct;44(4 Pt 2):173–182. doi: 10.1016/0002-9394(57)90445-2. [DOI] [PubMed] [Google Scholar]
  29. WEISS P., FERRIS W. Electronmicrograms of larval amphibian epidermis. Exp Cell Res. 1954 May;6(2):546–549. doi: 10.1016/0014-4827(54)90210-4. [DOI] [PubMed] [Google Scholar]
  30. WHITEAR M. An electron microscope study of the cornea in mice, with special reference to the innervation. J Anat. 1960 Jul;94:387–409. [PMC free article] [PubMed] [Google Scholar]
  31. WOLTER J. R. Innervation of the corneal endothelium of the eye of the rabbit. AMA Arch Ophthalmol. 1957 Aug;58(2):246–250. doi: 10.1001/archopht.1957.00940010258012. [DOI] [PubMed] [Google Scholar]
  32. ZANDER E., WEDDELL G. Observations on the innervation of the cornea. J Anat. 1951 Jan;85(1):68–99. [PMC free article] [PubMed] [Google Scholar]
  33. de ROETTH A., Jr Glycolytic activity of the cornea. AMA Arch Ophthalmol. 1951 Feb;45(2):139–148. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES