Abstract
In vitro studies of the transport of colloidal particles by the cornea were carried out on intact corneas of adult rabbits in a chamber described by Donn, Maurice, and Mills (2) in which the epithelial or the endothelial surface of the cornea was exposed to thorium dioxide or saccharated iron oxide under various conditions. These studies confirmed the results of previous work in vivo and allowed modification of the experimental conditions. Particles are pinocytosed at the apical surface of the corneal endothelium and carried around the terminal bar in membrane-bounded vesicles. Basal to the terminal bar these vesicles fuse with the lateral cell margin and their contents are released into the intercellular space, in which they appear to be carried by a one-way flow down to Descemet's membrane and the corneal stroma. Indications that the endothelial transport is an active process are presented by the different pathways of transport into or out of the corneal stroma, as well as by the approximately 70 per cent reduction in transport activity at low temperatures.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRANDT P. W. A study of the mechanism of pinocytosis. Exp Cell Res. 1958 Oct;15(2):300–313. doi: 10.1016/0014-4827(58)90032-6. [DOI] [PubMed] [Google Scholar]
- DONN A., MAURICE D. M., MILLS N. L. Studies on the living cornea in vitro. I. Method and physiologic measurements. Arch Ophthalmol. 1959 Nov;62:741–747. doi: 10.1001/archopht.1959.04220050003001. [DOI] [PubMed] [Google Scholar]
- DONN A., MAURICE D. M., MILLS N. L. Studies on the living cornea in vitro. II. The active transport of sodium across the epithelium. Arch Ophthalmol. 1959 Nov;62:748–757. doi: 10.1001/archopht.1959.04220050010002. [DOI] [PubMed] [Google Scholar]
- FRIEDMAN E., KUPFER C. Transcorneal potential in vivo. Arch Ophthalmol. 1960 Dec;64:892–896. doi: 10.1001/archopht.1960.01840010894010. [DOI] [PubMed] [Google Scholar]
- KAYE G. I., PAPPAS G. D. Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the cornea in vivo. J Cell Biol. 1962 Mar;12:457–479. doi: 10.1083/jcb.12.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANGHAM M. E. Glycolysis in the cornea of the rabbit. J Physiol. 1954 Nov 29;126(2):396–403. doi: 10.1113/jphysiol.1954.sp005217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAURICE D. M. The permeability to sodium ions of the living rabbit's cornea. J Physiol. 1951 Feb;112(3-4):367–391. doi: 10.1113/jphysiol.1951.sp004535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLER F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960 Dec;8:689–718. doi: 10.1083/jcb.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAK POY R. F., BENTLEY P. J. Fine structure of the epithelial cells of the toad urinary bladder. Exp Cell Res. 1960 Jun;20:235–237. doi: 10.1016/0014-4827(60)90246-9. [DOI] [PubMed] [Google Scholar]
- PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol. 1959 May 25;5(3):363–372. doi: 10.1083/jcb.5.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J Biophys Biochem Cytol. 1959 May 25;5(3):373–384. doi: 10.1083/jcb.5.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]