Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Apr 1;13(1):43–53. doi: 10.1083/jcb.13.1.43

SWELLING OF FISH MITOCHONDRIA

Thomas Richardson 1, A L Tappel 1
PMCID: PMC2106062  PMID: 14491969

Abstract

The physical properties of fish liver and rat liver mitochondria were compared as a function of temperature and osmotic pressure. The data indicate that fish mitochondria are more flexible and swell at a more rapid rate over a 0 to 30°C temperature range, whereas the rates of swelling at 30 to 40°C are comparable. The swelling rates of both fish and rat mitochondria vary with temperature and approximate the Arrhenius relationship. Apparent energies of activation for swelling averaged 26.5 kcal and 12.9 kcal for rat and fish, respectively. Fish mitochondria were less stable than rat mitochondria to osmotic variation, and the disparity in initial swelling rates became increasingly greater with lower osmotic pressure. The hypotonic swelling of both fish and rat mitochondria was readily reversed osmotically; however, there was a very rapid decay of reversal in fish mitochondria and only a very slow decay in the case of rat. All the data indicate that under comparable conditions the fish mitochondrial membranes are more flexible and presumably more permeable and labile than rat mitochondrial membranes. The findings are discussed in relation to the general metabolic implications and the possible contributions of the membrane constituents to membrane behavior.

Full Text

The Full Text of this article is available as a PDF (529.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. II. Difference spectra. J Biol Chem. 1955 Nov;217(1):395–407. [PubMed] [Google Scholar]
  2. CONNELL J. J. The relative stabilities of the skeletal-muscle myosins of some animals. Biochem J. 1961 Sep;80:503–509. doi: 10.1042/bj0800503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DOUNCE A. L., WITTER R. F., MONTY K. J., PATE S., COTTONE M. A. A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. J Biophys Biochem Cytol. 1955 Mar;1(2):139–153. doi: 10.1083/jcb.1.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fraenkel G., Hopf H. S. The physiological action of abnormally high temperatures on poikilothermic animals: Temperature adaptation and the degree of saturation of the phosphatides. Biochem J. 1940 Jul;34(7):1085–1092. doi: 10.1042/bj0341085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  6. HOLMAN R. T., WIDMER C. Polyunsaturated fatty acids in beef heart mitochondria and derived enzymically active lipoprotein fractions. J Biol Chem. 1959 Sep;234:2269–2271. [PubMed] [Google Scholar]
  7. HUNTER F. E., Jr, DAVIS J., CARLAT L. The stability of oxidative and phosphorylative systems in mitochondria under anaerobic conditions. Biochim Biophys Acta. 1956 Apr;20(1):237–242. doi: 10.1016/0006-3002(56)90282-7. [DOI] [PubMed] [Google Scholar]
  8. KANUNGO M. S., PROSSER C. L. Physiological and biochemical adaptation of goldfish to cold and warm temperatures. II. Oxygen consumption of liver homogenate; oxygen consumption and oxidative phosphorylation of liver mitochondria. J Cell Comp Physiol. 1959 Dec;54:265–274. doi: 10.1002/jcp.1030540309. [DOI] [PubMed] [Google Scholar]
  9. LEHNINGER A. L., RAY B. L., SCHNEIDER M. The swelling of rat liver mitochondria by thyroxine and its reversal. J Biophys Biochem Cytol. 1959 Jan 25;5(1):97–108. doi: 10.1083/jcb.5.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PACKER L. Metabolic and structural states of mitochondria. I. Regulation by adenosine diphosphate. J Biol Chem. 1960 Jan;235:242–249. [PubMed] [Google Scholar]
  11. RAAFLAUB J. Die Schwellung isolierter Leberzellmitochondrien und ihre physikalisch-chemische Beeinflussbarkeit. Helv Physiol Pharmacol Acta. 1953;11(2):142–156. [PubMed] [Google Scholar]
  12. RICHARDSON T., TAPPEL A. L., GRUGER E. H., Jr Essential fatty acids in mitochondria. Arch Biochem Biophys. 1961 Jul;94:1–6. doi: 10.1016/0003-9861(61)90002-9. [DOI] [PubMed] [Google Scholar]
  13. TAPLEY D. F. The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria. J Biol Chem. 1956 Sep;222(1):325–339. [PubMed] [Google Scholar]
  14. TEDESCHI H., HARRIS D. L. The osmotic behavior and permeability to non-electrolytes of mitochondria. Arch Biochem Biophys. 1955 Sep;58(1):52–67. doi: 10.1016/0003-9861(55)90092-8. [DOI] [PubMed] [Google Scholar]
  15. TEDESCHI H. The structure of the mitochondrial membrane: inferences from permeability properties. J Biophys Biochem Cytol. 1959 Oct;6:241–252. doi: 10.1083/jcb.6.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WOJTCZAK L., LEHNINGER A. L. Formation and disappearance of an endogenous uncoupling factor during swelling and contraction of mitochondria. Biochim Biophys Acta. 1961 Aug 19;51:442–456. doi: 10.1016/0006-3002(61)90600-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES