Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Apr 1;13(1):55–87. doi: 10.1083/jcb.13.1.55

FUNCTIONAL EVIDENCE FOR THE EXISTENCE OF A THIRD CELL TYPE IN THE RENAL GLOMERULUS

Phagocytosis of Filtration Residues by a Distinctive "Third" Cell

Marilyn G Farquhar 1, George E Palade 1
PMCID: PMC2106064  PMID: 19866600

Abstract

Two types of cells can be recognized on the luminal side of the glomerular basement membrane: the superficial endothelial cells which directly line the lumen and are comparable to endothelia lining the capillaries of other tissues, and the deep cells, ordinarily not in contact with the lumen, which are distinguished by their long cytoplasmic arms extending for some distance in several directions along the capillary wall, numerous spinous processes, and occasional intraluminal pseudopodia. Experiments carried out with electron-opaque tracers indicated that a functional distinction, based on extent of phagocytosis, can be made between the superficial and deep cells, thus supporting the existence of a distinctive "third" cell (in addition to endothelium and epithelium) in the renal glomerulus. Ferritin, colloidal gold, or thorotrast was administered intravenously to normal and, in the case of ferritin, to nephrotic rats. Kidney tissue was fixed at selected intervals from 1 hour to 10 days after the injection and studied by electron microscopy. Within 1 to 4 hours after tracer administration, the particles which did not traverse the glomerular capillary wall gradually accumulated in the less compact, inner strata of the basement membrane and the large spongy areas of axial regions. After 1 day the concentration of circulating tracer declined and the peripheral areas of the capillaries became relatively free of particles while large accumulations developed in the axial regions. During this period increasing quantities of ferritin were taken up by the deep cells and were found within large and small sized invaginations of their cell membrane or concentrated within cytoplasmic vesicles, vacuoles, multivesicular and dense bodies. At the same time the deep cells showed increased numbers of intraluminal pseudopodia. Within 2 to 4 days the deposits in the spongy areas were cleared and concomitantly increased quantities of tracer appeared in the deep cells within dense cytoplasmic bodies, some of which were more compact than before. When ferritin was given to nephrotic animals the sequence of events was generally the same except that the ferritin deposits at any given period were more massive, their incorporation into the deep cells occurred primarily by means of large pockets 1 to 2 µ in diameter and their clearance from the spongy areas was slower. In normal as well as in nephrotic animals, the phagocytic activity of the superficial endothelium was negligible when compared to that of the deep cells.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENACERRAF B., McCLUSKEY R. T., PATRAS D. Localization of colloidal substances in vascular endothelium: a mechanism of tissue damage. I. Factors causing the pathologic deposition of colloidal carbon. Am J Pathol. 1959 Jan-Feb;35(1):75–91. [PMC free article] [PubMed] [Google Scholar]
  2. BENCOSME S. A., STONE R. S., LATTA H., MADDEN S. C. Acute reactions with collagen production in renal glomeruli of rats as studied electron microscopically. J Ultrastruct Res. 1959 Dec;3:171–185. doi: 10.1016/s0022-5320(59)90013-9. [DOI] [PubMed] [Google Scholar]
  3. BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
  4. BERGSTRAND A., BUCHT H. Anatomy of the glomerulus as observed in biopsy material from young and healthy human subjects. Z Zellforsch Mikrosk Anat. 1958;48(1):51–73. doi: 10.1007/BF00496712. [DOI] [PubMed] [Google Scholar]
  5. DIXON F. J., FELDMAN J. D., VAZQUEZ J. J. Experimental glomerulonephritis. The pathogenesis of a laboratory model resembling the spectrum of human glomerulonephritis. J Exp Med. 1961 May 1;113:899–920. doi: 10.1084/jem.113.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ELLIS J. T. Glomerular lesions and the nephrotic syndrome in rabbits given saccharated iron oxide intravenously; with special reference to the part played by intracapillary precipitates in the pathogenesis of the lesions. J Exp Med. 1956 Jan 1;103(1):127–144. doi: 10.1084/jem.103.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FARQUHAR M. G. Fine structure and function in capillaries of the anterior pituitary gland. Angiology. 1961 Jul;12:270–292. doi: 10.1177/000331976101200704. [DOI] [PubMed] [Google Scholar]
  8. FARQUHAR M. G., HOPPER J., Jr, MOON H. D. Diabetic glomerulosclerosis: electron and light microscopic studies. Am J Pathol. 1959 Jul-Aug;35(4):721–753. [PMC free article] [PubMed] [Google Scholar]
  9. FARQUHAR M. G., PALADE G. E. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med. 1961 Nov 1;114:699–716. doi: 10.1084/jem.114.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FARQUHAR M. G., PALADE G. E. Segregation of ferritin in glomerular protein absorption droplets. J Biophys Biochem Cytol. 1960 Apr;7:297–304. doi: 10.1083/jcb.7.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FARQUHAR M. G., VERNIER R. L., GOOD R. A. An electron microscope study of the glomerulus in nephrosis, glomerulonephritis, and lupus erythematosus. J Exp Med. 1957 Nov 1;106(5):649–660. doi: 10.1084/jem.106.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FAWCETT D. W. Intercellular bridges. Exp Cell Res. 1961;Suppl 8:174–187. doi: 10.1016/0014-4827(61)90347-0. [DOI] [PubMed] [Google Scholar]
  13. GRISHMAN E., CHURG J. Acute glomerulonephritis; a histopathologic study by means of thin sections. Am J Pathol. 1957 Sep-Oct;33(5):993–1007. [PMC free article] [PubMed] [Google Scholar]
  14. HOPPER J., Jr, FARQUHAR M. G., YAMAUCHI H., MOON H. D., PAGE E. W. Renal lesions in pregnancy. Clinical observations and light and electron microscopic findings. Obstet Gynecol. 1961 Mar;17:271–293. [PubMed] [Google Scholar]
  15. JONES D. B. Inflammation and repair of glomerulus. Am J Pathol. 1951 Nov-Dec;27(6):991–1009. [PMC free article] [PubMed] [Google Scholar]
  16. JONES D. B. Nephrotic glomerulonephritis. Am J Pathol. 1957 Mar-Apr;33(2):313–329. [PMC free article] [PubMed] [Google Scholar]
  17. KARRER H. E. Electron microscope study of developing chick embryo aorta. J Ultrastruct Res. 1960 Dec;4:420–454. doi: 10.1016/s0022-5320(60)80032-9. [DOI] [PubMed] [Google Scholar]
  18. KARRER H. E. Electron microscopic study of the phagocytosis process in lung. J Biophys Biochem Cytol. 1960 Apr;7:357–366. doi: 10.1083/jcb.7.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KURTZ S. M., MCMANUS J. F. A reconsideration of the development, structure, and disease of the human renal glomerulus. Am Heart J. 1959 Sep;58:357–371. doi: 10.1016/0002-8703(59)90152-8. [DOI] [PubMed] [Google Scholar]
  20. KURTZ S. M. The electron microscopy of the developing human renal glomerulus. Exp Cell Res. 1958 Apr;14(2):355–367. doi: 10.1016/0014-4827(58)90193-9. [DOI] [PubMed] [Google Scholar]
  21. Kimmelstiel P., Wilson C. Intercapillary Lesions in the Glomeruli of the Kidney. Am J Pathol. 1936 Jan;12(1):83–98.7. [PMC free article] [PubMed] [Google Scholar]
  22. LATTA H. Collagen in normal rat glomeruli. J Ultrastruct Res. 1961 Aug;5:364–373. doi: 10.1016/s0022-5320(61)80013-0. [DOI] [PubMed] [Google Scholar]
  23. LATTA H., MAUNSBACH A. B., MADDEN S. C. The centrolobular region of the renal glomerulus studied by electron microscopy. J Ultrastruct Res. 1960 Dec;4:455–472. doi: 10.1016/s0022-5320(60)80033-0. [DOI] [PubMed] [Google Scholar]
  24. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MARINOZZI V. Silver impregnation of ultrathin sections for electron microscopy. J Biophys Biochem Cytol. 1961 Jan;9:121–133. doi: 10.1083/jcb.9.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MELLORS R. C., ORTEGA L. G., HOLMAN H. R. Role of gamma globulins in pathogenesis of renal lesions in systemic lupus erythematosus and chronic membranous glomerulonephritis, with an observation on the lupus erythematosus cell reaction. J Exp Med. 1957 Aug 1;106(2):191–202. doi: 10.1084/jem.106.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MUELLER C. B. The structure of the renal glomerulus. Am Heart J. 1958 Feb;55(2):304–322. doi: 10.1016/0002-8703(58)90129-7. [DOI] [PubMed] [Google Scholar]
  28. McCluskey R. T., Zweifach B. W., Antopol W., Benacerraf B., Nagler A. L. Pathogenesis of Experimental Shock: I. Absence of Morphologic Evidence for Bacterial Endotoxemia. Am J Pathol. 1960 Sep;37(3):245–277. [PMC free article] [PubMed] [Google Scholar]
  29. PAK POY R. K. Electron microscopy of the mammalian renal glomerulus; the problems of intercapillary tissue and the capillary loop basement membrane. Am J Pathol. 1958 Sep-Oct;34(5):885–895. [PMC free article] [PubMed] [Google Scholar]
  30. PALADE G. E. Blood capillaries of the heart and other organs. Circulation. 1961 Aug;24:368–388. doi: 10.1161/01.cir.24.2.368. [DOI] [PubMed] [Google Scholar]
  31. PALAY S. L. The fine structure of secretory neurons in the preoptic nucleus of the goldish (Carassius auratus). Anat Rec. 1960 Dec;138:417–443. doi: 10.1002/ar.1091380404. [DOI] [PubMed] [Google Scholar]
  32. PEASE D. C. Fine structures of the kidney seen by electron microscopy. J Histochem Cytochem. 1955 Jul;3(4):295–308. doi: 10.1177/3.4.295. [DOI] [PubMed] [Google Scholar]
  33. PEASE D. C., MOLINARI S. Electron microscopy of muscular arteries; pial vessels of43 the cat and monkey. J Ultrastruct Res. 1960 Jun;3:447–468. doi: 10.1016/s0022-5320(60)90022-8. [DOI] [PubMed] [Google Scholar]
  34. PORTER K. R., PAPPAS G. D. Collagen formation by fibroblasts of the chick embryo dermis. J Biophys Biochem Cytol. 1959 Jan 25;5(1):153–166. doi: 10.1083/jcb.5.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. RHODIN J. Electron microscopy of the glomerular capillary wall. Exp Cell Res. 1955 Jun;8(3):572–574. doi: 10.1016/0014-4827(55)90136-1. [DOI] [PubMed] [Google Scholar]
  36. SOTELO J. R., PORTER K. R. An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 1959 Mar 25;5(2):327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. YAMADA E. Collagen fibrils within the renal glomerulus. J Biophys Biochem Cytol. 1960 Apr;7:407–408. doi: 10.1083/jcb.7.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. YAMADA E. The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol. 1955 Nov 25;1(6):551–566. doi: 10.1083/jcb.1.6.551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES