Abstract
Retinal dystrophies, known in man, dog, mouse, and rat, involve progressive loss of photoreceptor cells with onset during or soon after the developmental period. Functional (electroretinogram), chemical (rhodopsin analyses) and morphological (light and electron microscopy) data obtained in the rat indicated two main processes: (a) overproduction of rhodopsin and an associated abnormal lamellar tissue component, (b) progressive loss of photoreceptor cells. The first abnormality recognized was the appearance of swirling sheets or bundles of extracellular lamellae between normally developing retinal rods and pigment epithelium; membrane thickness and spacing resembled that in normal outer segments. Rhodopsin content reached twice normal values, was present in both rods and extracellular lamellae, and was qualitatively normal, judged by absorption maximum and products of bleaching. Photoreceptors attained virtually adult form and ERG function. Then rod inner segments and nuclei began degenerating; the ERG lost sensitivity and showed selective depression of the a-wave at high luminances. Outer segments and lamellae gradually degenerated and rhodopsin content decreased. No phagocytosis was seen, though pigment cells partially dedifferentiated and many migrated through the outer segment-debris zone toward the retina. Eventually photoreceptor cells and the b-wave of the ERG entirely disappeared. Rats kept in darkness retained electrical activity, rhodopsin content, rod structure, and extracellular lamellae longer than litter mates in light.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN K. T., TASAKI K. Localization of electrical activity in the cat retina by an electrode marking method. J Physiol. 1961 Sep;158:281–295. doi: 10.1113/jphysiol.1961.sp006769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. T., WIESEL T. N. Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J Physiol. 1961 Sep;158:257–280. doi: 10.1113/jphysiol.1961.sp006768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRUCKNER R. Spaltlampenmikroskopie und Ophthalmoskopie am Auge von Ratte und Maus. Doc Ophthalmol. 1951;5-6:452–554. doi: 10.1007/BF00143667. [DOI] [PubMed] [Google Scholar]
- Bourne M. C., Campbell D. A., Tansley K. HEREDITARY DEGENERATION OF THE RAT RETINA. Br J Ophthalmol. 1938 Oct;22(10):613–623. doi: 10.1136/bjo.22.10.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COGAN D. G. Primary chorioretinal aberrations with night blindness; pathology. Trans Am Acad Ophthalmol Otolaryngol. 1950 Jul-Aug;54:629–661. [PubMed] [Google Scholar]
- COLEMAN D. L. Phenylalanine hydroxylase activity in dilute and nondilute strains of mice. Arch Biochem Biophys. 1960 Dec;91:300–306. doi: 10.1016/0003-9861(60)90504-x. [DOI] [PubMed] [Google Scholar]
- DEOL M. S. The anatomy and development of the mutants pirouette, shaker-1 and waltzer in the mouse. Proc R Soc Lond B Biol Sci. 1956 May 29;145(919):206–213. doi: 10.1098/rspb.1956.0028. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Wald G. VITAMIN A DEFICIENCY AND NIGHT BLINDNESS. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):648–661. doi: 10.1073/pnas.44.7.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLAUERT A. M., GLAUERT R. H. Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol. 1958 Mar 25;4(2):191–194. doi: 10.1083/jcb.4.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON E. P., RIGGS L. A. Electroretinal and psychophysical dark adaptation curves. J Exp Psychol. 1951 Feb;41(2):139–147. doi: 10.1037/h0060692. [DOI] [PubMed] [Google Scholar]
- LASANSKY A., DE ROBERTIS E. Submicroscopic analysis of the genetic distrophy of visual cells in C3H mice. J Biophys Biochem Cytol. 1960 Jul;7:679–684. doi: 10.1083/jcb.7.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCAS D. R., ATTFIELD M., DAVEY J. B. Retinal dystrophy in the rat. J Pathol Bacteriol. 1955 Oct;70(2):469–474. doi: 10.1002/path.1700700225. [DOI] [PubMed] [Google Scholar]
- MUNGER B. L. Staining methods applicable to sections of osmium-fixed tissue for light microscopy. J Biophys Biochem Cytol. 1961 Nov;11:502–506. doi: 10.1083/jcb.11.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARRY H. B. Degenerations of the dog retina. II. Generalized progressive atrophy of hereditary origin. Br J Ophthalmol. 1953 Aug;37(8):487–502. doi: 10.1136/bjo.37.8.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARRY H. B., TANSLEY K., THOMSON L. C. Electroretinogram during development of hereditary retinal degeneration in the dog. Br J Ophthalmol. 1955 Jun;39(6):349–352. doi: 10.1136/bjo.39.6.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorsby A., Williams C. E. Retinal Aplasia as a Clinical Entity. Br Med J. 1960 Jan 30;1(5169):293–297. doi: 10.1136/bmj.1.5169.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TANSLEY K. Hereditary degeneration of the mouse retina. Br J Ophthalmol. 1951 Oct;35(10):573–582. doi: 10.1136/bjo.35.10.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOKUYASU K., YAMADA E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys Biochem Cytol. 1959 Oct;6:225–230. doi: 10.1083/jcb.6.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
