Abstract
The fine structure of the erythrocyte during development in rabbit and human fetal liver has been studied. A morphologic description of representative erythropoietic cells and their relationship to the hepatic parenchyma is presented. Erythrocyte development was accompanied by a decrease in nuclear and cell size, fragmentation and eventual loss of nucleoli, and progressive clumping of chromatin at the nuclear margin. Mitochondria, endoplasmic reticulum, and Golgi elements decreased in size or abundance and eventually disappeared. Ribosome concentration initially increased, but subsequently diminished as the cytoplasm increased in electron opacity, probably through the accumulation of hemoglobin. Similar dense material, interpreted to be hemoglobin, infiltrated the nuclear annuli and, in some cases, appeared to extend into the interchromatin regions. There was a marked decrease in the number of annuli of the nuclear envelope. Possible relationships between nucleus and cytoplasm and of RNA to hemoglobin synthesis are discussed. In rabbits, erythroid and hepatic cells were separated by a 200 to 400 A space limited by the undulatory membranes of the respective cells. Membranes of adjacent erythropoietic cells were parallel and more closely apposed (100 to 200 A). In humans, relationship between various cells exhibited wide variation. Ferritin particles were observed within forming and formed "rhopheocytotic" vesicles.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ACKERMAN G. A., BELLIOS N. C. A study of the morphology of the living cells of blood and bone marrow in supravital films with the phase contrast microscope. II. Blood and bone marrow from various hematologic dyscrasias. Blood. 1955 Dec;10(12):1183–1203. [PubMed] [Google Scholar]
- ACKERMAN G. A., GRASSO J. A., KNOUFF R. A. Erythropoiesis in the mammalian embryonic liver as revealed by electron microscopy. Lab Invest. 1961 Jul-Aug;10:787–796. [PubMed] [Google Scholar]
- BESSIS M. C., BRETON-GORIUS J. Iron particles in normal erythroblasts and normal and pathological erythrocytes. J Biophys Biochem Cytol. 1957 May 25;3(3):503–504. doi: 10.1083/jcb.3.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BESSIS M., BRETON-GORIUS J. [The erythroblastic islet and the rhopheocytosis of ferritin in inflammation]. Nouv Rev Fr Hematol. 1961 Jul-Aug;1:569–582. [PubMed] [Google Scholar]
- BRACHET J. Recherches sur les interactions biochimiques entre le noyau et le cytoplasme chez les organismes unicellulaires. I. Amoeba proteus. Biochim Biophys Acta. 1955 Oct;18(2):247–268. doi: 10.1016/0006-3002(55)90063-9. [DOI] [PubMed] [Google Scholar]
- DAVIES H. G. Structure in nucleated erythrocytes. J Biophys Biochem Cytol. 1961 Mar;9:671–687. doi: 10.1083/jcb.9.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAY H. Chromosome-nuclear membrane-cytoplasmic interrelations in Drosophila. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):407–414. [PMC free article] [PubMed] [Google Scholar]
- JONES O. P. Origin of megakaryocyte granules from Golgi vesicles. Anat Rec. 1960 Oct;138:105–113. doi: 10.1002/ar.1091380204. [DOI] [PubMed] [Google Scholar]
- LONDON I. M. The metabolism of the erythrocyte. Harvey Lect. 1960;56:151–189. [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARSHAK A. Interrelationships and functions of the nucleic acids. Lab Invest. 1959 Mar-Apr;8(2):460–479. [PubMed] [Google Scholar]
- PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. The fine structure of mitochondria. Anat Rec. 1952 Nov;114(3):427–451. doi: 10.1002/ar.1091140304. [DOI] [PubMed] [Google Scholar]
- SWIFT H. Studies on nuclear fine structure. Brookhaven Symp Biol. 1959 Nov;12:134–152. [PubMed] [Google Scholar]
- SWIFT H. The fine structure of annulate lamellae. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):415–418. doi: 10.1083/jcb.2.4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweet R., Lamfrom H., Allen E. THE SYNTHESIS OF HEMOGLOBIN IN A CELL-FREE SYSTEM. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1029–1035. doi: 10.1073/pnas.44.10.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Reduction of heating artifacts in thin sections examined in the electron microscope. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1017–1022. doi: 10.1083/jcb.3.6.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958 Nov 25;4(6):727–730. doi: 10.1083/jcb.4.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISS P. The cell in development. Lab Invest. 1959 Mar-Apr;8(2):415–430. [PubMed] [Google Scholar]