Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Aug 1;14(2):281–302. doi: 10.1083/jcb.14.2.281

A COMPARISON OF THE CHANGES IN FINE STRUCTURE OF L CELLS DURING SINGLE CYCLES OF VIRAL MULTIPLICATION, FOLLOWING THEIR INFECTION WITH THE VIRUSES OF MENGO AND ENCEPHALOMYOCARDITIS

Samuel Dales 1, Richard M Franklin 1
PMCID: PMC2106107  PMID: 13883195

Abstract

The virus of encephalomyocarditis (EMC), examined by the negative-contrast method, is indistinguishable from the serologically related Mengovirus. The particles are 270 to 280 A in diameter. The surface of EMC is composed of an undetermined number of subunits. Frequent sampling of infected cells was carried out throughout one-step cycles of viral multiplication to observe cytopathic changes occurring in L cells infected by these two related RNA viruses. EMC and Mengovirus, which multiply at equal rates, in most respects elicit similar alterations in cell fine structure. Rearrangement and changes in nuclear material accompanied by formation of small vesicles in the centrosphere region commence at 4 to 6 hours after infection. Thereafter a progressive degeneration of the nucleus and vesiculation of the cytoplasm are observed up to 18 to 20 hours. Increased numbers of small dense granules, indistinguishable from ribonucleoprotein particles, appear in the cytoplasm between 8 and 14 hours after infection. L cells infected with Mengovirus become permeable to Erythrocin more slowly than those infected with EMC. Only in the case of Mengovirus infection are large aggregates of dense material first observed in the cytoplasm at 8 hours, followed by the appearance of crystals probably composed of Mengovirus particles, at 12 hours. Differences in the rates of cell permeability after infection with EMC and Mengovirus are discussed in relation to formation of virus crystals and plaque-type mutants.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYER G. S., DENNY F. W., Jr, GINSBERG H. S. Sequential cellular changes produced by types 5 and 7 adenoviruses in HeLa cells and in human amniotic cells; cytological studies aided by fluorescein-labelled antibody. J Exp Med. 1959 Nov 1;110:827–844. doi: 10.1084/jem.110.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
  3. CORNATZER W. E., SANDSTROM W., FISCHER R. G. The effect of poliomyelitis virus type I (Mahoney strain) on the phospholipid metabolism of the HeLa cell. Biochim Biophys Acta. 1961 May 13;49:414–415. doi: 10.1016/0006-3002(61)90151-2. [DOI] [PubMed] [Google Scholar]
  4. DALES S. A study of the fine structure of mammalian somatic chromosomes. Exp Cell Res. 1960 Apr;19:577–590. doi: 10.1016/0014-4827(60)90065-3. [DOI] [PubMed] [Google Scholar]
  5. DALES S., HOWATSON A. F. Virus-like particles in association with L strain cells. Cancer Res. 1961 Feb;21:193–197. [PubMed] [Google Scholar]
  6. DALES S., SIMINOVITCH L. The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J Biophys Biochem Cytol. 1961 Aug;10:475–503. doi: 10.1083/jcb.10.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ELLEM K. A., COLTER J. S. The isolation of three variants of Mengo virus differing in plaque morphology and hemagglutinating characteristics. Virology. 1961 Nov;15:340–347. doi: 10.1016/0042-6822(61)90365-8. [DOI] [PubMed] [Google Scholar]
  9. FAULKNER P., MARTIN E. M., SVED S., VALENTINE R. C., WORK T. S. Studies on protein and nucleic acid metabolism in virus-infected mammalian cells. 2. The isolation, crystallization and chemical characterization of mouse encephalomyocarditis virus. Biochem J. 1961 Sep;80:597–605. doi: 10.1042/bj0800597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANKLIN R. M. A cytochemical description of the multiplication of mengovirus in L-929 cells. J Cell Biol. 1962 Jan;12:1–15. doi: 10.1083/jcb.12.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRANKLIN R. M. Comparison of assays for Mengovirus and Reovirus-3. Proc Soc Exp Biol Med. 1961 Jul;107:651–653. doi: 10.3181/00379727-107-26716. [DOI] [PubMed] [Google Scholar]
  12. FRANKLIN R. M., ROSNER J. Localization of ribonucleic acid synthesis in mengovirus-infected L-cells. Biochim Biophys Acta. 1962 Jan 22;55:240–241. doi: 10.1016/0006-3002(62)90960-5. [DOI] [PubMed] [Google Scholar]
  13. FUERST C. R. Plaque-type mutants of murine encephalomyocarditis virus. Virology. 1961 Apr;13:553–554. doi: 10.1016/0042-6822(61)90289-6. [DOI] [PubMed] [Google Scholar]
  14. HACKETT A. J. The cellular changes produced by two variants within type E54 of vesicular exanthema of swine virus in tissue culture. Virology. 1961 Oct;15:102–112. doi: 10.1016/0042-6822(61)90227-6. [DOI] [PubMed] [Google Scholar]
  15. HEALY G. M., FISHER D. C., PARKER R. C. Nutrition of animal cells in tissue culture. X. Synthetic medium No. 858. Proc Soc Exp Biol Med. 1955 May;89(1):71–77. doi: 10.3181/00379727-89-21719. [DOI] [PubMed] [Google Scholar]
  16. KALLMAN F., WILLIAMS R. C., DULBECCO R., VOGT M. Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus. J Biophys Biochem Cytol. 1958 May 25;4(3):301–308. doi: 10.1083/jcb.4.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LWOFF A., DULBECCO R., VOGT M., LWOFF M. Kinetics of the release of poliomyelitis virus from single cells. Virology. 1955 May;1(1):128–139. doi: 10.1016/0042-6822(55)90010-6. [DOI] [PubMed] [Google Scholar]
  19. MARTIN E. M., WORK T. S. Studies on protein and nucleic acid metabolism in virus-infected mammalian cells. IV. The localization of metabolic changes within subcellular fractions of Krebs II mouse-ascites-tumour cells infected with encephalomyocarditis virus. Biochem J. 1961 Dec;81:514–520. doi: 10.1042/bj0810514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MILLONIG G. A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol. 1961 Dec;11:736–739. doi: 10.1083/jcb.11.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. NUNEZ-MONTIEL O., WEIBEL J. Electron microscope study of ECHO 19 virus infection in monkey kidney cells. J Biophys Biochem Cytol. 1960 Sep;8:291–295. doi: 10.1083/jcb.8.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. REICH E., FRANKLIN R. M. Effect of mitomycin C on the growth of some animal viruses. Proc Natl Acad Sci U S A. 1961 Aug;47:1212–1217. doi: 10.1073/pnas.47.8.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. REICH E., FRANKLIN R. M., SHATKIN A. J., TATUM E. L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science. 1961 Aug 25;134(3478):556–557. doi: 10.1126/science.134.3478.556. [DOI] [PubMed] [Google Scholar]
  25. RIFKIND R. A., GODMAN G. C., HOWE C., MORGAN C., ROSE H. M. Structure and development of viruses as observed in the electron microscope. VI. ECHO virus, type 9. J Exp Med. 1961 Jul 1;114:1–12. doi: 10.1084/jem.114.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SANDERS F. K., HUPPERT J., HOSKINS J. M. Replication of an animal virus. Symp Soc Exp Biol. 1958;12:123–137. [PubMed] [Google Scholar]
  27. SANDERS F. K. Role of infective nucleic acid in the production of encephalomyocarditis virus. Nature. 1960 Mar 19;185:802–804. doi: 10.1038/185802a0. [DOI] [PubMed] [Google Scholar]
  28. SANFORD K. K., EARLE W. R., LIKELY G. D. The growth in vitro of single isolated tissue cells. J Natl Cancer Inst. 1948 Dec;9(3):229–246. [PubMed] [Google Scholar]
  29. SIMINOVITCH L., GRAHAM A. F., LESLEY S. M., NEVILL A. Propagation of L strain mouse cells in suspension. Exp Cell Res. 1957 Apr;12(2):299–308. doi: 10.1016/0014-4827(57)90143-x. [DOI] [PubMed] [Google Scholar]
  30. WHEELOCK E. F., TAMM I. Biochemical basis for alterations in structure and function of HeLa cells infected with Newcastle disease virus. J Exp Med. 1961 Nov 1;114:617–632. doi: 10.1084/jem.114.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES