Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Oct 1;15(1):73–84. doi: 10.1083/jcb.15.1.73

LOCALIZED AREAS OF HIGH ALKALINE PHOSPHATASE ACTIVITY IN THE TERMINAL ARTERIAL TREE

Flaviu C A Romanul 1, Roger G Bannister 1
PMCID: PMC2106124  PMID: 13982613

Abstract

Fresh frozen skeletal muscles of rats, rabbits, and humans were sectioned in a cryostat. Sections 12 to 32 micra thick were incubated in a substrate solution for the histochemical demonstration of non-specific alkaline phosphatase activity. A modified azo dye coupling technique was used at pH 9.5. Localized areas of high enzymatic activity were found in specific and well defined areas along the terminal arterial tree, in addition to the activity which has been previously described in capillary endothelium. Arterial branches with luminal diameters of 25 micra or less showed staining of their endothelium starting abruptly at their origin from the parent vessel and fading distally. Smaller arterial branches showed the same localization of enzymatic activity and stained more intensely. Other organs of rats surveyed showed arterial branches with the same pattern of staining. Identical results were obtained using the Gomori technique for alkaline phosphatase. Extensive saline perfusion of the vascular tree did not affect the observed localization of enzymatic activity. The enzymatic activity described may be part of the mechanism regulating the blood flow.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI F. M., WEBER G. Fosfatasi specifiche (5-nucleotidasi, ATP-pirofosfatasi) e fosfatasi aspecifica nella parete arteriosa normale, nell arteriosclerosi umana, nell'artiopatia sperimentale adrenalinica. Arch De Vecchi Anat Patol. 1951 May;16(3):985–1012. [PubMed] [Google Scholar]
  2. BANGA I., NOWOTNY A. Comparative studies about adenosinetriphosphatase activity of human muscles, aorta and arteria femoralis. Acta Physiol Acad Sci Hung. 1951;2(3-4):317–325. [PubMed] [Google Scholar]
  3. BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
  4. BURSTONE M. S. Histochemical demonstration of phosphatases in frozen sections with naphthol AS-phosphates. J Histochem Cytochem. 1961 Mar;9:146–153. doi: 10.1177/9.2.146. [DOI] [PubMed] [Google Scholar]
  5. CARR C. J., BELL F. K., BRADYHOUSE M. F., KRANTZ J. C., Jr The effect of vasodilators upon the dephosphorylating enzymes of dogs' coronary arteries. J Pharmacol Exp Ther. 1953 Aug;108(4):385–392. [PubMed] [Google Scholar]
  6. CARR C. J., BELL F. K., KRANTZ J. C., Jr Adenosine triphosphatase activity of the vascular system. Proc Soc Exp Biol Med. 1952 Jun;80(2):323–325. doi: 10.3181/00379727-80-19611. [DOI] [PubMed] [Google Scholar]
  7. FREIMAN D. G., KAPLAN N. Studies on the histochemical differentiation of enzymes hydrolyzing adenosine triphosphate. J Histochem Cytochem. 1960 May;8:159–170. doi: 10.1177/8.3.159. [DOI] [PubMed] [Google Scholar]
  8. GLENNER G. G., BURTNER H. J., BROWN G. W., Jr The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J Histochem Cytochem. 1957 Nov;5(6):591–600. doi: 10.1177/5.6.591. [DOI] [PubMed] [Google Scholar]
  9. GOMORI G. Further studies on the histochemical specificity of phosphatases. Proc Soc Exp Biol Med. 1949 Nov;72(2):449–illust. doi: 10.3181/00379727-72-17464. [DOI] [PubMed] [Google Scholar]
  10. HERMAN E., DEANE W. H. A comparison of the localization of alkaline glycerophosphatase, as demonstrated by the gomori-Takamatsu method, in frozen and in paraffin sections. J Cell Physiol. 1953 Apr;41(2):201–222. doi: 10.1002/jcp.1030410203. [DOI] [PubMed] [Google Scholar]
  11. KIRK J. E. The 5-nucleotidase activity of human arterial tissue in individuals of various ages. J Gerontol. 1959 Jul;14:288–291. doi: 10.1093/geronj/14.3.288. [DOI] [PubMed] [Google Scholar]
  12. KIRK J. E. The adenylphyrophosphatase, inorganic pyrophosphatase, and phosphomonoesterase activities of human arterial tissue in individuals of various ages. J Gerontol. 1959 Apr;14(2):181–188. doi: 10.1093/geronj/14.2.181. [DOI] [PubMed] [Google Scholar]
  13. KOELLE G. B., VALK A. de T., Jr Physiological implications of the histochemical localization of monoamine oxidase. J Physiol. 1954 Dec 10;126(3):434–447. doi: 10.1113/jphysiol.1954.sp005220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kabat E. A., Furth J. A histochemical study of the distribution of alkaline phosphatase in various normal and neoplastic tissues. Am J Pathol. 1941 May;17(3):303–318.5. [PMC free article] [PubMed] [Google Scholar]
  15. Kirk E., Praetorius E. Presence of a Phosphatase in the Human Aortic Wall. Science. 1950 Mar 31;111(2883):334–334. doi: 10.1126/science.111.2883.334. [DOI] [PubMed] [Google Scholar]
  16. LEE R. E., HOLZE E. A. Peripheral vascular hemodynamics in the bulbar conjunctiva of subjects with hypertensive vascular disease. J Clin Invest. 1951 Jun;30(6):539–546. doi: 10.1172/JCI102470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MAENGWYN-DAVIES G. D., FRIEDENWALD J. S., WHITE R. T. Histochemical studies of alkaline phosphatases in the tissues of the rat using frozen sections. II. Substrate specificity of enzymes hydrolyzing adenosinetriphosphate, muscle- and yeast-adenylic acids, and creatinephosphate at high PH; the histochemical demonstration of myosin ATP-ASE. J Cell Physiol. 1952 Jun;39(3):395–447. doi: 10.1002/jcp.1030390307. [DOI] [PubMed] [Google Scholar]
  18. MAENGWYN-DAVIES G. D., FRIEDENWALD J. S., WHITE R. T., WILSON M. M. Histochemical studies of alkaline phosphatases in the tissues of the rat using frozen sections. I. Substrate specificity of enzymes hydrolyzing poly-glycol-mono-phosphate esters, hexose-diphosphate, and -naphthylphosphate. J Cell Physiol. 1950 Dec;36(3):421–459. doi: 10.1002/jcp.1030360308. [DOI] [PubMed] [Google Scholar]
  19. MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MCMANUS J. F. A., LUPTON C. H., HARDEN G. Histochemical studies of 5 nucleotidase. I. Method and specificity. Lab Invest. 1952;1(4):480–487. [PubMed] [Google Scholar]
  22. MOORE D. H., RUSKA H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol. 1957 May 25;3(3):457–462. doi: 10.1083/jcb.3.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Macfarlane M. G., Patterson L. M., Robison R. The phosphatase activity of animal tissues. Biochem J. 1934;28(2):720–724. doi: 10.1042/bj0280720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. NEWMAN W., FEIGIN I. Histochemical studies on tissue enzymes; distribution of some enzyme systems which liberate phosphate at pH 9.2 as determined with various substrates and inhibitors; demonstration of three groups of enzymes. Am J Pathol. 1950 Mar;26(2):257-305, incl 7 pl. [PMC free article] [PubMed] [Google Scholar]
  25. NICOLL P. A., WEBB R. L. Vascular patterns and active vasomotion as determiners of flow through minute vessels. Angiology. 1955 Aug;6(4):291–308. doi: 10.1177/000331975500600403. [DOI] [PubMed] [Google Scholar]
  26. PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
  27. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  28. PEARSE A. G. E., REIS J. L. The histochemical demonstration of a specific phosphatase (5-nucleotidase). Biochem J. 1952 Feb;50(4):534–536. doi: 10.1042/bj0500534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. REIS J. L. The specificity of phospho-monoesterases in human tissues. Biochem J. 1951 May;48(5):548–551. doi: 10.1042/bj0480548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. RUTENBURG A. M., SELIGMAN A. M. The histochemical demonstration of acid phosphatase by a post-incubation coupling technique. J Histochem Cytochem. 1955 Nov;3(6):455–470. doi: 10.1177/3.6.455. [DOI] [PubMed] [Google Scholar]
  31. THOMPSON R. H. S., TICKNER A. The occurrence and distribution of mono-amine oxidase in blood vessels. J Physiol. 1951 Sep;115(1):34–40. doi: 10.1113/jphysiol.1951.sp004651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolf A., Kabat E. A., Newman W. Histochemical Studies on Tissue Enzymes: III. A Study of the Distribution of Acid Phosphatases with Special Reference to the Nervous System. Am J Pathol. 1943 May;19(3):423–440. [PMC free article] [PubMed] [Google Scholar]
  33. ZWEIFACH B. W. General principles governing the behavior of the microcirculation. Am J Med. 1957 Nov;23(5):684–696. doi: 10.1016/0002-9343(57)90369-8. [DOI] [PubMed] [Google Scholar]
  34. ZWEIFACH B. W., METZ D. B. Selective distribution of blood through the terminal vascular bed of mesenteric structures and skeletal muscle. Angiology. 1955 Aug;6(4):282–290. doi: 10.1177/000331975500600402. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES