Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Oct 1;15(1):9–17. doi: 10.1083/jcb.15.1.9

FINE STRUCTURE OF CELLS ISOLATED FROM ADULT MOUSE LIVER

M N Berry 1, F O Simpson 1
PMCID: PMC2106139  PMID: 19866610

Abstract

Suspensions of isolated cells in various media were prepared from mouse liver which had been perfused via the portal vein with a buffered medium containing 0.40 M sucrose, and the cells were fixed with osmium tetroxide. Their fine structure was compared with that of cells from perfused and unperfused intact liver. Perfusion brought about some separation of the cells with little or no damage to cell membranes. When cells were dispersed in 0.40 M sucrose medium the plasma membranes partially broke down, and this disintegration was increased by transfer of the cells to media of lower osmolarity. This is presumed to account for the loss of permeability barriers which occurs in isolated liver cells. The mitochondria in cells of perfused liver and in isolated cells remained elongated, but the layers of many mitochondrial cristae became separated by clear spaces. When cells were transferred to a medium containing 0.20 M sucrose, the mitochondria swelled and became spherical, often with displacement of the swollen cristae to the periphery. In a medium containing 0.06 M sucrose and 0.08 M potassium chloride the outer chamber of many mitochondria became swollen with displacement of the mitochondrial body to one side to give a crescent-shaped appearance. These changes in mitochondrial morphology are discussed in relation to the metabolic activity of isolated liver cells.

Full Text

The Full Text of this article is available as a PDF (1,015.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON N. G. The mass isolation of whole cells from rat liver. Science. 1953 Jun 5;117(3049):627–628. doi: 10.1126/science.117.3049.627. [DOI] [PubMed] [Google Scholar]
  2. BRANSTER M. V., MORTON R. K. Isolation of intact liver cells. Nature. 1957 Dec 7;180(4597):1283–1284. doi: 10.1038/1801283a0. [DOI] [PubMed] [Google Scholar]
  3. CAULFIELD J. B. Effects of varying the vehicle for OsO4 in tissue fixation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):827–830. doi: 10.1083/jcb.3.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COMAN D. R. Cellular adhesiveness in relation to the invasiveness of cancer; electron microscopy of liver perfused with a chelating agent. Cancer Res. 1954 Aug;14(7):519–521. [PubMed] [Google Scholar]
  5. ELBERS P. F. Fixation of yeast protoplasts for electron microscopy. Nature. 1961 Sep 2;191:1022–1023. doi: 10.1038/1911022a0. [DOI] [PubMed] [Google Scholar]
  6. JACKSON K. L., PACE N. Some permeability properties of isolated rat liver cell mitochondria. J Gen Physiol. 1956 Sep 20;40(1):47–71. doi: 10.1085/jgp.40.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JOHNSON D., LARDY H. Substrate-selective inhibition of mitochondrial oxidations by enhanced tonicity. Nature. 1958 Mar 8;181(4610):701–702. doi: 10.1038/181701a0. [DOI] [PubMed] [Google Scholar]
  8. LEESON T. S., KALANT H. Effects of in vivo decalcification on ultrastructure of adult rat liver. J Biophys Biochem Cytol. 1961 May;10:95–104. doi: 10.1083/jcb.10.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEVER J. D., CHAPPELL J. B. Mitochondria isolated from rat brown adipose tissue and liver. J Biophys Biochem Cytol. 1958 May 25;4(3):287–290. doi: 10.1083/jcb.4.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MALAMED S., RECKNAGEL R. O. The osmotic behavior of the sucrose-inaccessible space of mitochondrial pellets from rat liver. J Biol Chem. 1959 Nov;234:3027–3030. [PubMed] [Google Scholar]
  11. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SIEKEVITZ P., WATSON M. L. Cytochemical studies of mitochondria. I. The separation and identification of a membrane fraction from isolated mitochondria. J Biophys Biochem Cytol. 1956 Nov 25;2(6):639–652. doi: 10.1083/jcb.2.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SLATER E. C., CLELAND K. W. The effect of tonicity of the medium on the respiratory and phosphorylative activity of heart-muscle sarcosomes. Biochem J. 1953 Mar;53(4):557–567. doi: 10.1042/bj0530557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TEDESCHI H., HARRIS D. L. The osmotic behavior and permeability to non-electrolytes of mitochondria. Arch Biochem Biophys. 1955 Sep;58(1):52–67. doi: 10.1016/0003-9861(55)90092-8. [DOI] [PubMed] [Google Scholar]
  15. WERKHEISER W. C., BARTLEY W. The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. Biochem J. 1957 May;66(1):79–91. doi: 10.1042/bj0660079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WITTER R. F., WATSON M. L., COTTONE M. A. Morphology and ATP-ase of isolated mitochondria. J Biophys Biochem Cytol. 1955 Mar;1(2):127–138. doi: 10.1083/jcb.1.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ZIEGLER D. M., LINNANE A. W., GREEN D. E., DASS C. M., RIS H. Studies on the electron transport system. XI. Correlation of the morphology and enzymic properties of mitochondrial and sub-mitochondrial particles. Biochim Biophys Acta. 1958 Jun;28(3):524–538. doi: 10.1016/0006-3002(58)90515-8. [DOI] [PubMed] [Google Scholar]
  18. ZIEGLER D. M., LINNANE A. W. Studies on the electron transport system. XIII. Mitochondrial structure and dehydrogenase activity in isolated mitochondria. Biochim Biophys Acta. 1958 Oct;30(1):53–63. doi: 10.1016/0006-3002(58)90240-3. [DOI] [PubMed] [Google Scholar]
  19. ZIMMERMAN M., DEVLIN T. M., PRUSS M. P. Anaerobic glycolysis of dispersed cell suspensions from normal and malignant tissues. Nature. 1960 Jan 30;185:315–316. doi: 10.1038/185315a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES