Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Nov 1;15(2):241–258. doi: 10.1083/jcb.15.2.241

STUDIES ON THE CORNEA

III. The Fine Structure of the Frog Cornea and the Uptake and Transport of Colloidal Particles by the Cornea in vivo

Gordon I Kaye 1
PMCID: PMC2106142  PMID: 14042126

Abstract

The fine structure of the frog cornea has been studied and compared with that of the rabbit cornea (1, 2) particularly in relation to the uptake and transport of colloidal particles. The frog corneal endothelium does not possess a terminal bar and the fluid space of the intercellular space is apparently continuous with that of the anterior chamber. Colloidal markers (ThO2, Fe2O3) placed in the anterior chamber pass down the intercellular space into the cornea. Markers injected intrastromally diffuse freely in the stroma and Descemet's membrane but pass across the endothelium only via membrane-bounded vesicles. These results are compared with those of similar experiments in the rabbit and it is concluded that the primary pathway for the passage of materials into the cornea is intercellular and that the pinocytotic pathway of the rabbit corneal endothelium (Kaye and Pappas; Kaye et al.) is an adaptation to the presence of a terminal bar. The significance of the separation of inward and outward pathways in terms of corneal metabolism is considered.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. KAYE G. I., PAPPAS G. D. Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the cornea in vivo. J Cell Biol. 1962 Mar;12:457–479. doi: 10.1083/jcb.12.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J Biophys Biochem Cytol. 1959 May 25;5(3):373–384. doi: 10.1083/jcb.5.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. PRESS N. An electron microscope study of a mechanism for the delivery of follicular cytoplasm to an avian egg. Exp Cell Res. 1959 Aug;18:194–196. doi: 10.1016/0014-4827(59)90309-x. [DOI] [PubMed] [Google Scholar]
  6. SCHWARTZ B., DANES B., LEINFELDER P. J. The role of metabolism in the hydration of the isolated lens and cornea. Am J Ophthalmol. 1954 Jul;38(12):182–193. doi: 10.1016/0002-9394(54)90023-9. [DOI] [PubMed] [Google Scholar]
  7. ZANDER E., WEDDELL G. Observations on the innervation of the cornea. J Anat. 1951 Jan;85(1):68–99. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES