Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 Nov 1;15(2):363–377. doi: 10.1083/jcb.15.2.363

CENTRIOLES AND THE FORMATION OF RUDIMENTARY CILIA BY FIBROBLASTS AND SMOOTH MUSCLE CELLS

Sergei Sorokin 1
PMCID: PMC2106144  PMID: 13978319

Abstract

Cells from a variety of sources, principally differentiating fibroblasts and smooth muscle cells from neonatal chicken and mammalian tissues and from organ cultures of chicken duodenum, were used as materials for an electron microscopic study on the formation of rudimentary cilia. Among the differentiating tissues many cells possessed a short, solitary cilium, which projected from one of the cell's pair of centrioles. Many stages evidently intermediate in the fashioning of cilium from centriole were encountered and furnished the evidence from which a reconstruction of ciliogenesis was attempted. The whole process may be divided into three phases. At first a solitary vesicle appears at one end of a centriole. The ciliary bud grows out from the same end of the centriole and invaginates the sac, which then becomes the temporary ciliary sheath. During the second phase the bud lengthens into a shaft, while the sheath enlarges to contain it. Enlargement of the sheath is effected by the repeated appearance of secondary vesicles nearby and their fusion with the sheath. Shaft and sheath reach the surface of the cell, where the sheath fuses with the plasma membrane during the third phase. Up to this point, formation of cilia follows the classical descriptions in outline. Subsequently, internal development of the shaft makes the rudimentary cilia of the investigated material more like certain non-motile centriolar derivatives than motile cilia. The pertinent literature is examined, and the cilia are tentatively assigned a non-motile status and a sensory function.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNES B. G. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res. 1961 Oct;5:453–467. doi: 10.1016/s0022-5320(61)80019-1. [DOI] [PubMed] [Google Scholar]
  2. BERNHARD W., DE HARVEN E. Etude au microscope électronique de l'ultrastructure du centriole chez les vertébrés. Z Zellforsch Mikrosk Anat. 1956;45(3):378–398. [PubMed] [Google Scholar]
  3. BESSIS M., BRETON-GORIUS J., THIERY J. P. Centriole, corps de Golgi et aster des leucocytes; étude au microscope électronique. Rev Hematol. 1958 Jul-Sep;13(3):363–386. [PubMed] [Google Scholar]
  4. BUCK R. C., TIDSALE J. M. An electron microscopic study of the cleavage furrow in mammalian cells. J Cell Biol. 1962 Apr;13:117–125. doi: 10.1083/jcb.13.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGE A. J., MCLEAN J. D., MERCER F. V. A possible mechanism for the morphogenesis of lamellar systems in plant cells. J Biophys Biochem Cytol. 1956 Sep 25;2(5):597–608. doi: 10.1083/jcb.2.5.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LASANSKY A., DE ROBERTIS E. Submicroscopic analysis of the genetic distrophy of visual cells in C3H mice. J Biophys Biochem Cytol. 1960 Jul;7:679–684. doi: 10.1083/jcb.7.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LATTA H., MAUNSBACH A. B., MADDEN S. C. Cilia in different segments of the rat nephron. J Biophys Biochem Cytol. 1961 Oct;11:248–252. doi: 10.1083/jcb.11.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MANNWEILER K., BERNHARD W. Recherches ultrastructurales sur une tumeur rénale expérimentale du hamster. J Ultrastruct Res. 1957 Dec;1(2):158–169. doi: 10.1016/s0022-5320(57)80004-5. [DOI] [PubMed] [Google Scholar]
  12. PORTER K. R., MACHADO R. D. Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J Biophys Biochem Cytol. 1960 Feb;7:167–180. doi: 10.1083/jcb.7.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SOTELO J. R., TRUJILLO-CENOZ O. Electron microscope study of the kinetic apparatus in animal sperm cells. Z Zellforsch Mikrosk Anat. 1958;48(5):565–601. doi: 10.1007/BF00342732. [DOI] [PubMed] [Google Scholar]
  14. SOTELO J. R., TRUJILLO-CENOZ O. Electron microscope study on the development of ciliary components of the neural epithelium of the chick embryo. Z Zellforsch Mikrosk Anat. 1958;49(1):1–12. doi: 10.1007/BF00335059. [DOI] [PubMed] [Google Scholar]
  15. TENNYSON V. M., PAPPAS G. D. An electron microscope study of ependymal cells of the fetal, early postnatal and adult rabbit. Z Zellforsch Mikrosk Anat. 1962;56:595–618. doi: 10.1007/BF00540584. [DOI] [PubMed] [Google Scholar]
  16. TOKUYASU K., YAMADA E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys Biochem Cytol. 1959 Oct;6:225–230. doi: 10.1083/jcb.6.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. YAMADA E. The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel) 1957;29(3):267–290. doi: 10.1159/000141169. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES