Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1963 Jan 1;16(1):143–157. doi: 10.1083/jcb.16.1.143

CONTRAST BETWEEN OSMIUM-FIXED AND PERMANGANATE-FIXED TOAD SPINAL GANGLIA

Jack Rosenbluth 1
PMCID: PMC2106186  PMID: 13990905

Abstract

Chains of vesicles are prominent near the plasma membranes of both the neurons and satellite cells of osmium-fixed toad spinal ganglia. In permanganate-fixed specimens, however, such vesicles are absent, and in their place are continuous invaginations of the plasma membranes of these cells. The discrepancy suggests that the serried vesicles seen in osmium-fixed preparations arise through disintegration of plasma membrane invaginations, and do not represent active pinocytosis, as has been suggested previously. A second difference between ganglia fixed by these two methods is that rows of small, disconnected cytoplasmic globules occur in the sheaths of permanganate-fixed ganglia, but not in osmium-fixed samples. It is suggested that these globules arise from the breakdown of thin sheets of satellite cell cytoplasm which occur as continuous lamellae in osmium-fixed specimens. Possible mechanisms of these membrane reorganizations, and the relevance of these findings to other tissues, are discussed.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRANDT P. W. A study of the mechanism of pinocytosis. Exp Cell Res. 1958 Oct;15(2):300–313. doi: 10.1016/0014-4827(58)90032-6. [DOI] [PubMed] [Google Scholar]
  2. CHRISTENSEN A. K., FAWCETT D. W. The normal fine structure of opossum testicular interstitial cells. J Biophys Biochem Cytol. 1961 Mar;9:653–670. doi: 10.1083/jcb.9.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DE ROBERTIS E. D., BENNETT H. S. A submicroscopic vesicular component of Schwann cells and nerve satellite cells. Exp Cell Res. 1954 May;6(2):543–545. doi: 10.1016/0014-4827(54)90209-8. [DOI] [PubMed] [Google Scholar]
  4. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KARRER H. E. Electron microscopic study of the phagocytosis process in lung. J Biophys Biochem Cytol. 1960 Apr;7:357–366. doi: 10.1083/jcb.7.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LUFT J. H. Permanganate; a new fixative for electron microscopy. J Biophys Biochem Cytol. 1956 Nov 25;2(6):799–802. doi: 10.1083/jcb.2.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MOLLENHAUER H. H., ZEBRUN W. Permanganate fixation of the Golgi complex and other cytoplasmic structures of mammalian tests. J Biophys Biochem Cytol. 1960 Dec;8:761–775. doi: 10.1083/jcb.8.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PALADE G. E. Blood capillaries of the heart and other organs. Circulation. 1961 Aug;24:368–388. doi: 10.1161/01.cir.24.2.368. [DOI] [PubMed] [Google Scholar]
  9. PALAY S. L., KARLIN L. J. An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol. 1959 May 25;5(3):363–372. doi: 10.1083/jcb.5.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PALAY S. L., McGEE-RUSSELL S. M., GORDON S., Jr, GRILLO M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol. 1962 Feb;12:385–410. doi: 10.1083/jcb.12.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. REVEL J. P., NAPOLITANO L., FAWCETT D. W. Identification of glycogen in electron micrographs of thin tissue sections. J Biophys Biochem Cytol. 1960 Dec;8:575–589. doi: 10.1083/jcb.8.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
  13. ROSE G. A separable and multipurpose tissue culture chamber. Tex Rep Biol Med. 1954;12(4):1074–1083. [PubMed] [Google Scholar]
  14. ROSENBLUTH J. Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol. 1962 Jun;13:405–421. doi: 10.1083/jcb.13.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SCHRODT G. R. The fine structure of the lateral lobe of the rat prostate gland. Comparison with the dorsal and other lobes. J Ultrastruct Res. 1961 Oct;5:485–496. doi: 10.1016/s0022-5320(61)80022-1. [DOI] [PubMed] [Google Scholar]
  16. SEDAR A. W. Electron microscopy of the oxyntic cell in the gastric glands of the bullfrog, Rana catesbiana. II. The acid-secreting gastric mucosa. J Biophys Biochem Cytol. 1961 May;10:47–57. doi: 10.1083/jcb.10.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SIMPSON F. O., OERTELIS S. J. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J Cell Biol. 1962 Jan;12:91–100. doi: 10.1083/jcb.12.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SMITH S. W. Reticular and areticular Nissl bodies in sympathetic neurons of a lizard. J Biophys Biochem Cytol. 1959 Aug;6(1):77–84. doi: 10.1083/jcb.6.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958 Nov 25;4(6):727–730. doi: 10.1083/jcb.4.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES