Abstract
A study, mainly by electron microscopy, has been made on two leg muscles of rat, in the course of atrophy experimentally induced by total denervation. As a preliminary the chief distinctive features of the soleus, chosen as a representative of pure red muscle, and of the gastrocnemius, representative of pure white muscle, are described. Two major phases of atrophy, somewhat overlapping in time, were observed. In the first, a degenerative autolytic process takes place in areas of the fiber, with loss of striation. It can be detected as early as the 7th day, but the maximum is observed at the 14th day, and accounts for a gross weight loss of 50 per cent. The first alteration appears in the Z lines; disorder in the disposition of filaments then follows. The process occurs very rapidly, leaving large areas in the cell in which one can detect only ground substance, glycogen, rare randomly disposed vesicular elements, and some mitochondria. Several lysosomes and masses of lipoproteins, which assume the configuration of concentric lamellae, show up in these fibers. Subsequently large parts of the waste sarcoplasm are discarded into the intercellular spaces. In the second major phase the so called "simple" atrophy takes place. The process starts early, but its effects are more detectable after 1 month. In this period, single myofibrils undergo different degrees of reduction in diameter, while the spatial disposition of primary and secondary filaments inside the fibrils remains normal. The appearance of the fibrils in longitudinal sections suggests that the process takes place by the detachment of filaments from the periphery of the fibrils and by their subsequent breakdown in the interfibrillary spaces. The sarcoplasmic reticulum is still well preserved, and relatively overdeveloped. Mitochondria disappear in parallel with the contractile material.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIRKS R., KATZ B., MILEDI R. Dissociation of the 'surface membrane complex' in atrophic muscle fibres. Nature. 1959 Nov 7;184(Suppl 19):1507–1508. doi: 10.1038/1841507a0. [DOI] [PubMed] [Google Scholar]
- BIRKS R., KATZ B., MILEDI R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol. 1960 Jan;150:145–168. doi: 10.1113/jphysiol.1960.sp006379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BULLER A. J., ECCLES J. C., ECCLES R. M. Differentiation of fast and slow muscles in the cat hind limb. J Physiol. 1960 Feb;150:399–416. doi: 10.1113/jphysiol.1960.sp006394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., ECCLES R. M., LUNDBERG A. The action potentials of the alpha motoneurones supplying fast and slow muscles. J Physiol. 1958 Jul 14;142(2):275–291. doi: 10.1113/jphysiol.1958.sp006015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUNTHER P. G., KRUGER P. Das Sarkoplasmatische Reticulum in den quergestreiften Muskelfasern der Wirbeltiere und des Menschen. Acta Anat (Basel) 1956;28(1-2):135–149. [PubMed] [Google Scholar]
- Gutmann E. The reinnervation of muscle by sensory nerve fibres. J Anat. 1945 Jan;79(Pt 1):1–8.4. [PMC free article] [PubMed] [Google Scholar]
- Gutmann E., Young J. Z. The re-innervation of muscle after various periods of atrophy. J Anat. 1944 Jan;78(Pt 1-2):15–43. [PMC free article] [PubMed] [Google Scholar]
- HEARN G. R. Succinate-cytochrome c reductase, cytochrome oxidase and aldolase activities of denervated rat skeletal muscle. Am J Physiol. 1959 Feb;196(2):465–466. doi: 10.1152/ajplegacy.1959.196.2.465. [DOI] [PubMed] [Google Scholar]
- HIBBS R. G. Electron microscopy of developing cardiac muscle in chick embryos. Am J Anat. 1956 Jul;99(1):17–51. doi: 10.1002/aja.1000990103. [DOI] [PubMed] [Google Scholar]
- HUMOLLER F. L., GRISWOLD B., McINTYRE A. R. Effect of neurotomy on succinic dehydrogenase activity of muscle. Am J Physiol. 1951 Mar;164(3):742–747. doi: 10.1152/ajplegacy.1951.164.3.742. [DOI] [PubMed] [Google Scholar]
- HUMOLLER F. L., HATCH D., MCINTYRE A. R. Cytochrome oxidase activity in muscle following neurotomy. Am J Physiol. 1952 Aug;170(2):371–374. doi: 10.1152/ajplegacy.1952.170.2.371. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JARCHO L. W., BERMAN B., DOWBEN R. M., LILIENTHAL J. L., Jr Site of origin and velocity of conduction of fibrillary potentials in denervated skeletal muscle. Am J Physiol. 1954 Jul;178(1):129–134. doi: 10.1152/ajplegacy.1954.178.1.129. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUFFLER S. W., VAUGHAN WILLIAMS E. M. Small-nerve junctional potentials; the distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J Physiol. 1953 Aug;121(2):289–317. doi: 10.1113/jphysiol.1953.sp004948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LI C. L., SHY G. M., WELLS J. Some properties of mammalian skeletal muscle fibres with particular reference to fibrillation potentials. J Physiol. 1957 Mar 11;135(3):522–535. doi: 10.1113/jphysiol.1957.sp005727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langley J. N., Kato T. The rate of loss of weight in skeletal muscle after nerve section with some observations on the effect of stimulation and other treatment. J Physiol. 1915 Jul 5;49(5):432–440. doi: 10.1113/jphysiol.1915.sp001719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAYOR H. D., HAMPTON J. C., ROSARIO B. A simple method for removing the resin from epoxy-embedded tissue. J Biophys Biochem Cytol. 1961 Apr;9:909–910. doi: 10.1083/jcb.9.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NACHMIAS V. T., PADYKULA H. A. A histochemical study of normal and denervated red and white muscles of the rat. J Biophys Biochem Cytol. 1958 Jan 25;4(1):47–54. doi: 10.1083/jcb.4.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PADIEU P. Biosynthèse des protéines muscularies et section du nerf moteur. Bull Soc Chim Biol (Paris) 1959;41(1):57–67. [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PELLEGRINO C., VILLANI G., FRANZINI C. beta-Glicuronidasi e fosfatasi acida nell'atrofia da denervazione del muscolo tibiale anteriore di ratto. Arch Sci Biol (Bologna) 1957 Jul-Aug;41(4):339–347. [PubMed] [Google Scholar]
- PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RANDALL J. T. Observations on contractile systems. J Cell Physiol Suppl. 1957 May;49(Suppl 1):199–220. doi: 10.1002/jcp.1030490420. [DOI] [PubMed] [Google Scholar]
- SCHAPIRA G., COURSAGET J., DREYFUS J. C., SCHAPIRA F. Incorporation dans la myosine du glycocolle marqué à l'azote; rôles de l'atrophie et de la topographie musculaire. Bull Soc Chim Biol (Paris) 1953;35(11-12):1309–1317. [PubMed] [Google Scholar]
- SUNDERLAND S., RAY L. J. Denervation changes in mammalian striated muscle. J Neurol Neurosurg Psychiatry. 1950 Aug;13(3):159–177. doi: 10.1136/jnnp.13.3.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAPPEL A. L., ZALKIN H., CALDWELL K. A., DESAI I. D., SHIBKO S. Increased lysosomal enzymes in genetic muscular dystrophy. Arch Biochem Biophys. 1962 Feb;96:340–346. doi: 10.1016/0003-9861(62)90418-6. [DOI] [PubMed] [Google Scholar]
- ZAK R., GUTMANN E. Lack of correlation between synthesis of nucleic acids and proteins in denervated muscle. Nature. 1960 Mar 12;185:766–767. doi: 10.1038/185766a0. [DOI] [PubMed] [Google Scholar]
- ZALKIN H., TAPPEL A. L., CALDWELL K. A., SHIBKO S., DESAI I. D., HOLLIDAY T. A. Increased lysosomal enzymes in muscular dystrophy of vitamin E-deficient rabbits. J Biol Chem. 1962 Aug;237:2678–2682. [PubMed] [Google Scholar]