Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1963 Jun 1;17(3):609–628. doi: 10.1083/jcb.17.3.609

FINE STRUCTURE IN FROZEN-ETCHED YEAST CELLS

H Moor 1, K Mühlethaler 1
PMCID: PMC2106217  PMID: 19866628

Abstract

The freeze-etching technique, which is a special kind of freeze-drying, allows electron microscopic investigation of cells and tissues in the frozen state. In regard to yeast cells (Saccharomyces cerevisiae) a freeze-fixation technique has been developed which does not kill the object. The electron micrographs therefore are considered to impart an image of high fidelity. The cutting of the frozen object, which actually consists of a fine splintering, produces not only cross-sectional views (cross-fractures) of the structures but also surface views of the membranes and organelles. Many surface structures are described which have not been shown by the usual sectioning techniques. The cytoplasmic membrane contains hexagonal arrangements of particles which are apparently involved in the production of the glucan fibrils of the cell wall. Alterations of the distribution of nuclear pores are shown in cells of different ages. Freeze-etching enables a clear distinction of endoplasmic reticulum and vacuoles in yeast cells. The membranes of the vesicular systems are covered by ribosomes arranged in circular patterns. The mitochondrial envelope shows small perforations which could allow the exchange of macromolecules. The storage granules consist of concentric layers of lipid, presumably phosphatide. A Golgi apparatus has been detected which may be involved in the storage of lipid. The structure of the unit membrane and the membrane structures of all organelles as revealed by chemical fixation are confirmed in principle. Glycogen agglomerations are identified in the ground plasm of older cells. Insight into artifacts introduced by common chemical fixation and embedding techniques is obtained and discussed.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp Cell Res. 1955 Feb;8(1):147–158. doi: 10.1016/0014-4827(55)90051-3. [DOI] [PubMed] [Google Scholar]
  2. AGAR H. D., DOUGLAS H. C. Studies on the cytological structure of yeast: electron microscopy of thin sections. J Bacteriol. 1957 Mar;73(3):365–375. doi: 10.1128/jb.73.3.365-375.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARTHOLOMEW J. W., LEVIN R. The structure of Saccharomyces carlsbergensis and S. cerevisiae as determined by ultra-thin sectioning methods and electron microscopy. J Gen Microbiol. 1955 Jun;12(3):473–477. doi: 10.1099/00221287-12-3-473. [DOI] [PubMed] [Google Scholar]
  4. BESSIS M. C., BRETON-GORIUS J. Ferrtin and ferruginous micelles in normal erythroblasts and hypochromic hypersideremic anemias. Blood. 1959 Apr;14(4):423–432. [PubMed] [Google Scholar]
  5. ECKSTEIN B. Karyologische Untersuchungen an einer Wildhefe. Arch Mikrobiol. 1958;32(1):65–80. [PubMed] [Google Scholar]
  6. HASHIMOTO T., CONTI S. F., NAYLOR H. B. Fine structure of microorganisms. III. Electron microscopy of resting and germinating ascospores of Saccharomyces cerevisiae. J Bacteriol. 1958 Oct;76(4):406–416. doi: 10.1128/jb.76.4.406-416.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HASHIMOTO T., CONTI S. F., NAYLOR H. B. Studies of the fine structure of microorganisms. IV. Observations on budding Saccharomyces cerevisiae by light and electron microscopy. J Bacteriol. 1959 Mar;77(3):344–354. doi: 10.1128/jb.77.3.344-354.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HIRANO T., LINDEGREN C. C. Electron microscopy of mitochondria in Saccharomyces. J Ultrastruct Res. 1961 Aug;5:321–327. doi: 10.1016/s0022-5320(61)80009-9. [DOI] [PubMed] [Google Scholar]
  9. HOUWINK A. L., KREGER D. R. Observations on the cell wall of yeasts; an electron microscope and x-ray diffraction study. Antonie Van Leeuwenhoek. 1953;19(1):1–24. doi: 10.1007/BF02594830. [DOI] [PubMed] [Google Scholar]
  10. KAWAKAMI N. Thread-like mitochondria in yeast cells. Exp Cell Res. 1961 Oct;25:179–181. doi: 10.1016/0014-4827(61)90319-6. [DOI] [PubMed] [Google Scholar]
  11. LINNANE A. W., VITOLS E., NOWLAND P. G. Studies on the origin of yeast mitochondria. J Cell Biol. 1962 May;13:345–350. doi: 10.1083/jcb.13.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MCCARTHY B. J., ARONSON A. I. The kinetics of the synthesis of ribosomal RNA in E. coli. Biophys J. 1961 Jan;1:227–245. doi: 10.1016/s0006-3495(61)86886-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MUNDKUR B. Electron microscopical studies of frozen-dried yeast. I. Localization of polysaccharides. Exp Cell Res. 1960 Jun;20:28–42. doi: 10.1016/0014-4827(60)90219-6. [DOI] [PubMed] [Google Scholar]
  14. MUNDKUR B. Electron microscopical studies of frozendried yeast. II. The nature of basophile particles and vesicular nuclei in Saccharomyces. Exp Cell Res. 1961 Oct;25:1–23. doi: 10.1016/0014-4827(61)90303-2. [DOI] [PubMed] [Google Scholar]
  15. MUNDKUR B. Electron microscopical studies of frozendried yeast. III. Formation of the tetrad in Saccharomyces. Exp Cell Res. 1961 Oct;25:24–40. doi: 10.1016/0014-4827(61)90304-4. [DOI] [PubMed] [Google Scholar]
  16. MUNDKUR B. Submicroscopic morphology of frozen-dried yeast. Exp Cell Res. 1960 Oct;21:201–205. doi: 10.1016/0014-4827(60)90361-x. [DOI] [PubMed] [Google Scholar]
  17. REBHUN L. I. Electron microscopy of basophilic structures of some invertebrate oocytes. II. Fine structure of the yolk nuclei. J Biophys Biochem Cytol. 1956 Mar 25;2(2):159–170. doi: 10.1083/jcb.2.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROBERTSON J. D. New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol. 1957 Nov 25;3(6):1043–1048. doi: 10.1083/jcb.3.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROBINOW C. F. Mitosis in the yeast Lipomyces lipofer. J Biophys Biochem Cytol. 1961 Apr;9:879–892. doi: 10.1083/jcb.9.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. THOENES W. Fine structure of lipid granules in proximal tubule cells of mouse kidney. J Cell Biol. 1962 Feb;12:433–437. doi: 10.1083/jcb.12.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. THYAGARAJAN T. R., CONTI S. F., NAYLOR H. B. Electron microscopy of yeast mitochondria. Exp Cell Res. 1961 Oct;25:216–218. doi: 10.1016/0014-4827(61)90331-7. [DOI] [PubMed] [Google Scholar]
  22. VITOLS E., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. II. Morphology and oxidative phosphorylation capacity of mitochondria and derived particles from baker's yeast. J Biophys Biochem Cytol. 1961 Mar;9:701–710. doi: 10.1083/jcb.9.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. VITOLS E., NORTH R. J., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell. J Biophys Biochem Cytol. 1961 Mar;9:689–699. doi: 10.1083/jcb.9.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WATSON M. L. Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cytol. 1959 Oct;6:147–156. doi: 10.1083/jcb.6.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WISCHNITZER S. An electron microscope study of the nuclear envelope of amphibian oocytes. J Ultrastruct Res. 1958 Apr;1(3):201–222. doi: 10.1016/s0022-5320(58)80001-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES