Abstract
A morphological basis for osmoregulation in the teleosts was studied by comparing the fine structure of chloride cells found in epithelia of the gills of three species of fish: Fundulus heteroclitus which can survive in a wide range of salinities, and F. similis and F. chrysotus which are usually restricted to salt water and fresh water environments, respectively. Gills were removed from F. heteroclitus which had been laboratory adapted to either sea water or pond water. For a comparison, gills were also removed from the marine F. similis and the fresh water F. chrysotus which had been adapted to their natural environments. Gill-filaments were fixed in Millonig's phosphate buffered (pH 7.4), 1 per cent osmium tetroxide and were embedded in Epon. Thin sections of filaments were stained with lead hydroxide. The cytoplasm of chloride cells of all three species of Fundulus is heavily populated with mitochondria and is filled with tubules of the agranular endoplasmic reticulum (ER). An orderly secretory cycle was indicated for chloride cells of salt water adapted F. heteroclitus and the marine F. similis. An amorphous material is observed in the agranular ER. Its density increases towards the apical end of the cell. In the apical cytoplasm, tubules of the agranular ER appear to converge and to discharge the amorphous material into an apical cavity. Except for the actual opening of the apical cavity, the distal end of salt water adapted chloride cells is characteristically shielded from the hypertonic environment by thin cytoplasmic flanges projecting from the neighboring epithelial cells. Chloride cells of the fresh water F. chrysotus resemble chloride cells of pond water adapted F. heteroclitus, in that these cells do not have apical cavities with the functional appearance of those in the sea water adapted forms. The distal end of fresh water adapted chloride cells is typically exposed to the free surface of the gill-filament. The possible function of the cell type is discussed.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AFZELIUS B. A. The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp Cell Res. 1955 Feb;8(1):147–158. doi: 10.1016/0014-4827(55)90051-3. [DOI] [PubMed] [Google Scholar]
- BURNS J., COPELAND D. E. Chloride excretion in the head region of fundulus heteroclitus. Biol Bull. 1950 Dec;99(3):381–385. doi: 10.2307/1538468. [DOI] [PubMed] [Google Scholar]
- CHRISTENSEN A. K., FAWCETT D. W. The normal fine structure of opossum testicular interstitial cells. J Biophys Biochem Cytol. 1961 Mar;9:653–670. doi: 10.1083/jcb.9.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COPELAND D. E., DALTON A. J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol. 1959 May 25;5(3):393–396. doi: 10.1083/jcb.5.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIBBS R. G., CLARK W. H., Jr Electron microscope studies of the human epidermis; the cell boundaries and topography of the stratum malpighii. J Biophys Biochem Cytol. 1959 Aug;6(1):71–76. doi: 10.1083/jcb.6.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KESSEL R. G., BEAMS H. W. Electron microscope studies on the gill filaments of Fundulus heteroclitus from sea water and fresh water with special reference to the ultrastructural organization of the "chloride cell". J Ultrastruct Res. 1962 Feb;6:77–87. doi: 10.1016/s0022-5320(62)90062-x. [DOI] [PubMed] [Google Scholar]
- Keys A., Willmer E. N. "Chloride secreting cells" in the gills of fishes, with special reference to the common eel. J Physiol. 1932 Nov 5;76(3):368–378.2. doi: 10.1113/jphysiol.1932.sp002932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MERRIAM R. W. On the fine structure and composition of the nuclear envelope. J Biophys Biochem Cytol. 1961 Dec;11:559–570. doi: 10.1083/jcb.11.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLONIG G. A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol. 1961 Dec;11:736–739. doi: 10.1083/jcb.11.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953 Jul;1(4):188–211. doi: 10.1177/1.4.188. [DOI] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARRY G., HOLLIDAY F. G., BLAXTER J. H. Chloride-secretory cells in the gills of teleosts. Nature. 1959 May 2;183(4670):1248–1249. doi: 10.1038/1831248a0. [DOI] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- SOTELO J. R., PORTER K. R. An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 1959 Mar 25;5(2):327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cytol. 1959 Oct;6:147–156. doi: 10.1083/jcb.6.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
