Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Jan;170(1):223–227. doi: 10.1128/jb.170.1.223-227.1988

Evidence for methyl group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis.

W A Bedale 1, D O Nettleton 1, C S Sopata 1, M S Thoelke 1, G W Ordal 1
PMCID: PMC210630  PMID: 3121584

Abstract

We present evidence for methyl (as methyl or methoxy) transfer from the methyl-accepting chemotaxis proteins H1 and possibly H3 of Bacillus subtilis to the methyl-accepting chemotaxis protein H2. This methyl transfer, which has been observed in vitro (D. J. Goldman and G. W. Ordal, Biochemistry 23:2600-2606, 1984), was strongly stimulated by the chemoattractant aspartate and thus may play an important role in the sensory processing system of this organism. Although radiolabeling of H1 and H3 began at once after the addition of [3H]methionine, radiolabeling of H2 showed a lag. Furthermore, the addition of excess nonradioactive methionine caused immediate exponential delabeling of H1 and H3 while labeling of H2 continued to increase. Methylation of H2 required the chemotactic methyltransferase, probably to first methylate H1 and H3. Aspartate caused increased labeling of H2 and strongly decreased labeling of H1 and H3 after the addition of nonradioactive methionine. Without the addition of nonradioactive methionine, aspartate caused demethylation of H1 and to a lesser extent H3, with an approximately equal increase of methylation of H2.

Full text

PDF
223

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlgren J. A., Ordal G. W. Methyl esterification of glutamic acid residues of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochem J. 1983 Sep 1;213(3):759–763. doi: 10.1042/bj2130759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burgess-Cassler A., Ullah A. H., Ordal G. W. Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II. J Biol Chem. 1982 Jul 25;257(14):8412–8417. [PubMed] [Google Scholar]
  3. Chelsky D., Dahlquist F. W. Structural studies of methyl-accepting chemotaxis proteins of Escherichia coli: evidence for multiple methylation sites. Proc Natl Acad Sci U S A. 1980 May;77(5):2434–2438. doi: 10.1073/pnas.77.5.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  5. Engström P., Hazelbauer G. L. Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of E. coli to chemical stimuli. Cell. 1980 May;20(1):165–171. doi: 10.1016/0092-8674(80)90244-5. [DOI] [PubMed] [Google Scholar]
  6. Goldman D. J., Ordal G. W. In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry. 1984 Jun 5;23(12):2600–2606. doi: 10.1021/bi00307a010. [DOI] [PubMed] [Google Scholar]
  7. Goldman D. J., Worobec S. W., Siegel R. B., Hecker R. V., Ordal G. W. Chemotaxis in Bacillus subtilis: effects of attractants on the level of methylation of methyl-accepting chemotaxis proteins and the role of demethylation in the adaptation process. Biochemistry. 1982 Mar 2;21(5):915–920. doi: 10.1021/bi00534a016. [DOI] [PubMed] [Google Scholar]
  8. Goy M. F., Springer M. S., Adler J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4964–4968. doi: 10.1073/pnas.74.11.4964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kort E. N., Goy M. F., Larsen S. H., Adler J. Methylation of a membrane protein involved in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3939–3943. doi: 10.1073/pnas.72.10.3939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  12. Ordal G. W. Bacterial chemotaxis: biochemistry of behavior in a single cell. Crit Rev Microbiol. 1985;12(2):95–130. doi: 10.3109/10408418509104426. [DOI] [PubMed] [Google Scholar]
  13. Ordal G. W., Goldman D. J. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science. 1975 Sep 5;189(4205):802–805. doi: 10.1126/science.808854. [DOI] [PubMed] [Google Scholar]
  14. Springer M. S., Goy M. F., Adler J. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3312–3316. doi: 10.1073/pnas.74.8.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thoelke M. S., Bedale W. A., Nettleton D. O., Ordal G. W. Evidence for an intermediate methyl-acceptor for chemotaxis in Bacillus subtilis. J Biol Chem. 1987 Feb 25;262(6):2811–2816. [PubMed] [Google Scholar]
  16. Ullah A. H., Ordal G. W. In vivo and in vitro chemotactic methylation in Bacillus subtilis. J Bacteriol. 1981 Feb;145(2):958–965. doi: 10.1128/jb.145.2.958-965.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES