Abstract
The cell envelope of Halobacterium halobium was seen in thin sections of permanganate-fixed cells to consist of one membrane. This membrane appeared mostly as a unit membrane but in a few preparations it resembled a 5-layered compound membrane. The cell envelope of Halobacterium salinarium at high resolution was always seen as a 5-layered structure different in appearance from the apparent compound membrane of H. halobium. The "envelopes" which were isolated in 12.5 per cent NaCl from each organism were indistinguishable from each other in the electron microscope and comprised, in each case, a single unit membrane with an over-all thickness of about 110 A. Some chemical analyses were made of isolated membranes after freeing them from salt by precipitating and washing with trichloroacetic acid. Such precipitated membranes consisted predominantly of protein, with little carbohydrate and no peptido-aminopolysaccharide (mucopeptide). Sectioned whole cells of H. halobium contained intracellular electron-opaque structures of unknown function.
Full Text
The Full Text of this article is available as a PDF (774.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAM D., GIBBONS N. E. The effect of chlorides of monovalent cations, urea, detergents, and heat on morphology and the turbidity of suspensions of red halophilic bacteria. Can J Microbiol. 1961 Oct;7:741–750. doi: 10.1139/m61-088. [DOI] [PubMed] [Google Scholar]
- BAXTER R. M. An interpretation of the effects of salts on the lactic dehydrogenase of Halobacterium salinarium. Can J Microbiol. 1959 Feb;5(1):47–57. doi: 10.1139/m59-006. [DOI] [PubMed] [Google Scholar]
- BAXTER R. M., GIBBONS N. E. The glycerol dehydrogenases of Pseudomonas salinaria, Vibrio costicolus, and Escherichia coli in relation to bacterial halophilism. Can J Biochem Physiol. 1954 May;32(3):206–217. [PubMed] [Google Scholar]
- BROWN A. D., SHOREY C. D. Preliminary observations on the cell envelopes of two species of Halobacterium. Biochim Biophys Acta. 1962 May 7;59:258–260. doi: 10.1016/0006-3002(62)90731-x. [DOI] [PubMed] [Google Scholar]
- GIBBONS N. E., PAYNE J. I. Relation of temperature and sodium chloride concentration to growth and morphology of some halophilic bacteria. Can J Microbiol. 1961 Aug;7:483–489. doi: 10.1139/m61-058. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
- RONDLE C. J., MORGAN W. T. The determination of glucosamine and galactosamine. Biochem J. 1955 Dec;61(4):586–589. doi: 10.1042/bj0610586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEHGAL S. N., GIBBONS N. E. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol. 1960 Apr;6:165–169. doi: 10.1139/m60-018. [DOI] [PubMed] [Google Scholar]
- STOFFYN P. J., JEANLOZ R. W. Identification of amino sugars by paper chromatography. Arch Biochem Biophys. 1954 Oct;52(2):373–379. doi: 10.1016/0003-9861(54)90137-x. [DOI] [PubMed] [Google Scholar]
- TAKEYA K., KOIKE M., MORI R., TODA T. Light and electron microscope studies of mycobacterium--mycobacteriophage interactions. III. Further studies on the ultrathin sections. J Biophys Biochem Cytol. 1961 Nov;11:441–447. doi: 10.1083/jcb.11.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VINCENT J. M., HUMPHREY B., NORTH R. J. Some features of the fine structure and chemical composition of Rhizobium trifolii. J Gen Microbiol. 1962 Nov;29:551–555. doi: 10.1099/00221287-29-3-551. [DOI] [PubMed] [Google Scholar]