Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1963 Sep 1;18(3):487–494. doi: 10.1083/jcb.18.3.487

SIZE AND SHAPE TRANSFORMATIONS CORRELATED WITH OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA

I. Swelling-Shrinkage Mechanisms in Intact Mitochondria

Lester Packer 1
PMCID: PMC2106322  PMID: 14064103

Abstract

Two types of swelling-shrinkage change manifested by isolated mammalian heart mitochondria have been studied. One type, designated as phase I or "low amplitude" swelling-shrinkage, is estimated to lead to changes in mitochondrial volume of 20 to 40 per cent, to changes in light scattering of about 30 per cent, and to changes in viscosity. These physical changes in mitochondria are brought about rapidly and reversibly by normal reactants of the respiratory chain. Their speed, specificity, and reversibility indicate that they are closely geared to the normal function of the respiratory chain and are a true reflection of a mechanochemical coupling process characteristic of the physiology of mitochondria. A second type of swelling-shrinkage mechanism, designated as phase II or "high amplitude," leads to changes in light scattering, viscosity, and mitochondrial volume which, frequently but not always, are of higher magnitude than the phase I type. Phase II swelling-shrinkage seems to be only partly under the control of the respiratory chain. Prior to the completion of phase II swelling, a stepwise loss of mitochondrial function can be identified, such as changes in the rate of substrate utilization and loss of respiratory control. Reversal of this type of swelling cannot be effected if the swelling change reaches a steady state. This type of swelling may provide cells with a mechanism for destroying mitochondrial substance.

Full Text

The Full Text of this article is available as a PDF (548.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANCE B., PACKER L. Light-scattering and absorption effects caused by addition of adenosine diphosphate to rat-heart-muscle sarcosomes. Biochem J. 1958 Feb;68(2):295–297. doi: 10.1042/bj0680295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
  3. DAVIES R. E., FONNESU A., PRICE C. A. Movements of water and ions in mitochondria. Biochem J. 1956 Dec;64(4):754–768. doi: 10.1042/bj0640754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FREDERIC J. Recherches cytologiques sur le chondriome normal ou soumis à l'expérimentation dans des cellules vivantes cultivées in vitro. Arch Biol (Liege) 1958;69(2):167–349. [PubMed] [Google Scholar]
  5. HUNTER F. E., Jr, FORD L. Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J Biol Chem. 1955 Sep;216(1):357–369. [PubMed] [Google Scholar]
  6. JACKSON K. L., PACE N. Some permeability properties of isolated rat liver cell mitochondria. J Gen Physiol. 1956 Sep 20;40(1):47–71. doi: 10.1085/jgp.40.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LEHNINGER A. L. A heat-labile factor required in extrusion of water from mitochondria. J Biol Chem. 1962 Mar;237:946–951. [PubMed] [Google Scholar]
  8. LEHNINGER A. L., RAY B. L. Oxidation-reduction state of rat liver mitochondria and the action of thyroxine. Biochim Biophys Acta. 1957 Dec;26(3):643–644. doi: 10.1016/0006-3002(57)90115-4. [DOI] [PubMed] [Google Scholar]
  9. LEHNINGER A. L. Reversal of thyroxine-induced swelling of rat liver mitochondria by adenosine triphosphate. J Biol Chem. 1959 Aug;234(8):2187–2195. [PubMed] [Google Scholar]
  10. LEHNINGER A. L. Reversal of various types of mitochondrial swelling by adenosine triphosphate. J Biol Chem. 1959 Sep;234:2465–2471. [PubMed] [Google Scholar]
  11. LEHNINGER A. L. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev. 1962 Jul;42:467–517. doi: 10.1152/physrev.1962.42.3.467. [DOI] [PubMed] [Google Scholar]
  12. MALAMED S., RECKNAGEL R. O. Comparison of opacimetric and hematocrit methods in measurement of mitochondrial swelling. Proc Soc Exp Biol Med. 1958 May;98(1):139–142. doi: 10.3181/00379727-98-23966. [DOI] [PubMed] [Google Scholar]
  13. NEUBERT D., ROSE T. H., LEHNINGER A. L. Assay and cellular distribution of mitochondrial "contraction factor". J Biol Chem. 1962 Jun;237:2025–2031. [PubMed] [Google Scholar]
  14. PACKER L., GOLDER R. H. Correlation of structural and metabolic changes accompanying the addition of carbohydrates to Ehrlich ascites tumor cells. J Biol Chem. 1960 May;235:1234–1240. [PubMed] [Google Scholar]
  15. PACKER L. Metabolic and structural states of mitochondria. I. Regulation by adenosine diphosphate. J Biol Chem. 1960 Jan;235:242–249. [PubMed] [Google Scholar]
  16. PACKER L. Metabolic and structural states of mitochondria. II. Regulation by phosphate. J Biol Chem. 1961 Jan;236:214–220. [PubMed] [Google Scholar]
  17. PACKER L., TAPPEL A. L. Light scattering changes linked to oxidative phosphorylation in mitochondrial membrane fragments. J Biol Chem. 1960 Feb;235:525–530. [PubMed] [Google Scholar]
  18. RAAFLAUB J. Die Schwellung isolierter Leberzellmitochondrien und ihre physikalisch-chemische Beeinflussbarkeit. Helv Physiol Pharmacol Acta. 1953;11(2):142–156. [PubMed] [Google Scholar]
  19. TAPLEY D. F. The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria. J Biol Chem. 1956 Sep;222(1):325–339. [PubMed] [Google Scholar]
  20. WATANABE S., PACKER L. Oxidative phosphorylation of cardiac mitochondria and contraction of glycerol-treated fibers of psoas muscle. J Biol Chem. 1961 Apr;236:1201–1206. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES