Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1963 Dec 1;19(3):477–500. doi: 10.1083/jcb.19.3.477

ROLE OF THE GAMETE MEMBRANES IN FERTILIZATION IN SACCOGLOSSUS KOWALEVSKII (ENTEROPNEUSTA)

I. The Acrosomal Region and Its Changes in Early Stages of Fertilization

Arthur L Colwin 1, Laura Hunter Colwin 1
PMCID: PMC2106329  PMID: 14086133

Abstract

Previous electron microscope studies of sperm-egg association in the annelid Hydroides revealed novel aspects with respect to the acrosomal region. To determine whether these aspects were unique, a comparable study was made of a species belonging to a widely separated phylum, Hemichordata. Osmium tetroxide-fixed polyspermic material of the enteropneust, Saccoglossus, was used. The acrosomal region includes the membrane-bounded acrosome, with its large acrosomal granule and shallow adnuclear invagination, and the periacrosomal material which surrounds the acrosome except at the apex; here, the acrosomal membrane lies very close to the enclosing sperm plasma membrane. After reaching the egg envelope, the spermatozoon is activated and undergoes a series of changes: the apex dehisces and around the resulting orifice the acrosomal and sperm plasma membranes form a continuous mosaic membrane. The acrosomal granule disappears. Within 7 seconds the invagination becomes the acrosomal tubule, spans the egg envelopes, and meets the egg plasma membrane. The rest of the acrosomal vesicle everts. The periacrosomal mass changes profoundly: part becomes a fibrous core (possibly equivalent to a perforatorium); part remains as a peripheral ring. The basic pattern of structure and sperm-egg association in Saccoglossus is the same as in Hydroides. Previous evidence from four other phyla as interpreted here also indicates conformity to this pattern. The major role of the acrosome is apparently to deliver the sperm plasma membrane to the egg plasma membrane.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A., MURRAY A. The acrosomal reaction of spermatozoa during fertilization or treatment with egg water. Exp Cell Res. 1957 Apr;12(2):325–337. doi: 10.1016/0014-4827(57)90146-5. [DOI] [PubMed] [Google Scholar]
  2. AFZELIUS B. A. The fine structure of the sea urchin spermatozoa as revealed by the electron microscope. Z Zellforsch Mikrosk Anat. 1955;42(1-2):134–148. doi: 10.1007/BF00335087. [DOI] [PubMed] [Google Scholar]
  3. AUSTIN C. R., BISHOP M. W. Role of the rodent acrosome and perforatorium in fertilization. Proc R Soc Lond B Biol Sci. 1958 Dec 4;149(935):241–248. doi: 10.1098/rspb.1958.0066. [DOI] [PubMed] [Google Scholar]
  4. AUSTIN C. R., BISHOP M. W. Some features of the acrosome and perforatorium in mammalian spermatozoa. Proc R Soc Lond B Biol Sci. 1958 Dec 4;149(935):234–240. doi: 10.1098/rspb.1958.0065. [DOI] [PubMed] [Google Scholar]
  5. AUSTIN C. R., BRADEN A. W. H. Passage of the sperm and the penetration of the egg in mammals. Nature. 1952 Nov 29;170(4335):919–921. doi: 10.1038/170919a0. [DOI] [PubMed] [Google Scholar]
  6. BERG W. E. Lytic effects of sperm extracts on the eggs of mytilus edulis. Biol Bull. 1950 Apr;98(2):128–138. doi: 10.2307/1538574. [DOI] [PubMed] [Google Scholar]
  7. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CLERMONT Y., EINBERG E., LEBLOND C. P., WAGNER S. The perforatorium; an extension of the nuclear membrane of the rat spermatozoon. Anat Rec. 1955 Jan;121(1):1–12. doi: 10.1002/ar.1091210102. [DOI] [PubMed] [Google Scholar]
  10. COLWIN A. L., COLWIN L. H. Changes in the spermatozoon during fertilization in Hydroides hexagonus (Annelida). II. Incorporation with the egg. J Biophys Biochem Cytol. 1961 Jun;10:255–274. doi: 10.1083/jcb.10.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. COLWIN A. L., COLWIN L. H. Egg membrane lytic activity of sperm extract and its significance in relation to sperm entry in Hydroides hexagonus (Annelida). J Biophys Biochem Cytol. 1960 Apr;7:321–328. doi: 10.1083/jcb.7.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. COLWIN A. L., COLWIN L. H. Fine structure of the spermatozoon of Hydroides hexagonus (Annelida), with special reference to the acrosomal region. J Biophys Biochem Cytol. 1961 Jun;10:211–230. doi: 10.1083/jcb.10.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. COLWIN A. L., COLWIN L. H., PHILPOTT D. E. Electron microscope studies of early stages of sperm penetration in Hydroides hexagonus (annelida) and Saccoglossus kowalevskii (enteropneusta). J Biophys Biochem Cytol. 1957 May 25;3(3):489–502. doi: 10.1083/jcb.3.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. COLWIN L. H., COLWIN A. L. Changes in the spermatozoon during fertilization in Hydroides hexagonus (Annelida). I. Passage of the acrosomal region through the vitelline membrane. J Biophys Biochem Cytol. 1961 Jun;10:231–254. doi: 10.1083/jcb.10.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. COLWIN L. H., COLWIN A. L. ROLE OF THE GAMETE MEMBRANES IN FERTILIZATION IN SACCOGLOSSUS KOWALEVSKII (ENTEROPNEUSTA). II. ZYGOTE FORMATION BY GAMETE MEMBRANE FUSION. J Cell Biol. 1963 Dec;19:501–518. doi: 10.1083/jcb.19.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DALTON A. J., ZEIGEL R. F. A simplified method of staining thin sections of biolgical material with lead hydroxide for electron microscopy. J Biophys Biochem Cytol. 1960 Apr;7:409–410. doi: 10.1083/jcb.7.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DAN J. C. Studies on the acrosome. VI. Fine structure of the starfish acrosome. Exp Cell Res. 1960 Feb;19:13–28. doi: 10.1016/0014-4827(60)90033-1. [DOI] [PubMed] [Google Scholar]
  18. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MORICARD R. [Electron microscopic observations of the acrosomic changes after spermatic penetration of mammalian ova]. C R Seances Soc Biol Fil. 1960;154:2187–2189. [PubMed] [Google Scholar]
  21. MOSES M. J. Spermiogenesis in the crayfish (Procambarus clarkii) II. Description of stages. J Biophys Biochem Cytol. 1961 Jul;10:301–333. doi: 10.1083/jcb.10.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MOSES M. J. Spermiogenesis in the crayfish (Procambarus clarkii). I. Structural characterization of the mature sperm. J Biophys Biochem Cytol. 1961 Jan;9:222–228. doi: 10.1083/jcb.9.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NAGANO T. Observations on the fine structure of the developing spermatid in the domestic chicken. J Cell Biol. 1962 Aug;14:193–205. doi: 10.1083/jcb.14.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SATIR P. G., PEACHEY L. D. Thin sections. II. A simple method for reducing compression artifacts. J Biophys Biochem Cytol. 1958 May 25;4(3):345–348. doi: 10.1083/jcb.4.3.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tyler A. Extraction of an Egg-Membrane-Lysin from Sperm of the Giant Keyhole Limpet (Megathura Crenulata). Proc Natl Acad Sci U S A. 1939 Jul;25(7):317–323. doi: 10.1073/pnas.25.7.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WADA S. K., COLLIER J. R., DAN J. C. Studies on the acrosome. V. An egg-membrane lysin from the acrosomes of Mytilus edulis spermatozoa. Exp Cell Res. 1956 Feb;10(1):168–180. doi: 10.1016/0014-4827(56)90083-0. [DOI] [PubMed] [Google Scholar]
  27. YASUZUMI G., KAYE G. I., PAPPAS G. D., YAMAMOTO H., TSUBO I. Nuclear and cytoplasmic differentiation in developing sperm of the crayfish, Cambaroides japonicus. Z Zellforsch Mikrosk Anat. 1961;53:141–158. doi: 10.1007/BF00339438. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES