Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1963 Dec 1;19(3):613–629. doi: 10.1083/jcb.19.3.613

INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS

II. Enzymatic and Other Hydrolytic Treatments

Sylvan Nass 1, Margit M K Nass 1
PMCID: PMC2106332  PMID: 14086139

Abstract

The effects of proteolytic enzymes, ribonuclease, and deoxyribonuclease upon a fibrous component of chick embryo mitochondria, which was previously shown to have many fixation and staining properties characteristic of the bacterial nucleoplasm, are reported. Pepsin digestion of formaldehyde-fixed tissues removed the membranes and matrices of mitochondria, but a pepsin-resistant fibrous material remained which was heavily stained by uranyl and lead ions. Experiments on a DNA "model system" showed that DNA treated with osmium tetroxide can be depolymerized by deoxyribonuclease. Zinc ions strongly inhibited the depolymerization of DNA. Digestion of osmium tetroxide-fixed tissues (fixed only briefly) with deoxyribonuclease for 1 hour greatly reduced the Feulgen staining of the nuclei, and after 4 hours the Feulgen reaction was completely abolished. The reduction and the disappearance of the Feulgen reaction in nuclei was paralleled by partial to complete digestion of the mitochondrial fibers in the regions studied (after 1 and 4 hours, respectively), without any other obvious changes in cellular structures. When deoxyribonuclease was inhibited by the addition of zinc ions, the nuclear Feulgen reaction was not diminished, nor were the mitochondrial fibers removed. Buffer control incubations for deoxyribonuclease and ribonuclease did not alter the structure or staining properties of the mitochondrial fibers, nor did incubation with ribonuclease. The latter reaction digested the cytoplasmic and nucleolar ribosomes after a 4-hour incubation period, in parallel with the abolishment of toluidine blue staining. The results contribute further evidence that these mitochondria contain deoxyribonucleic acid.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEAUFAY H., BENDALL D. S., BAUDHUIN P., DE DUVE C. Tissue fractionation studies. 12. Intracellular distribution of some dehydrogenases, alkaline deoxyribonuclease and iron in rat-liver tissue. Biochem J. 1959 Dec;73:623–628. doi: 10.1042/bj0730623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENDICH A., RUSSELL P. J., Jr, BROWN G. B. On the heterogeneity of the desoxyribonucleic acids. J Biol Chem. 1953 Jul;203(1):305–318. [PubMed] [Google Scholar]
  3. BIEBER S., SPENCE J. A., HITCHINGS G. H. Nucleic acids and their derivatives and the development of Rana pipiens. I. Oögenesis. Exp Cell Res. 1959 Jan;16(1):202–214. doi: 10.1016/0014-4827(59)90207-1. [DOI] [PubMed] [Google Scholar]
  4. BOLLUM F. J., POTTER V. R. Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J Biol Chem. 1958 Aug;233(2):478–482. [PubMed] [Google Scholar]
  5. CHARGAFF E., CRAMPTON C. F., LIPSHITZ R. Separation of calf thymus deoxyribonucleic acid into fractions of different composition. Nature. 1953 Aug 15;172(4372):289–292. doi: 10.1038/172289a0. [DOI] [PubMed] [Google Scholar]
  6. CHEVREMONT M., CHEVREMONT-COMHAIRE S., BAECKELAND E. [Action of neutral and acid desoxyribonucleases on living somatic cells cultured in vitro]. Arch Biol (Liege) 1959 Jul-Sep;70:811–831. [PubMed] [Google Scholar]
  7. CHIBA Y., SUGAHARA K. The nucleic acid content of chloroplasts isolated from spinach and tobacco leaves. Arch Biochem Biophys. 1957 Oct;71(2):367–376. doi: 10.1016/0003-9861(57)90047-4. [DOI] [PubMed] [Google Scholar]
  8. Caspari E. The Inheritance of the Difference in the Composition of the Liver Mitochondria between Two Mouse Strains. Genetics. 1956 Jan;41(1):107–117. doi: 10.1093/genetics/41.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeLAMATER E. D. A staining and dehydrating procedure for the handling of microorganisms. Stain Technol. 1951 Jul;26(3):199–204. doi: 10.3109/10520295109113208. [DOI] [PubMed] [Google Scholar]
  10. EMANUELSSON H. Ribonucleic acid and acid-soluble nucleotides of the early chick blastoderm. Acta Physiol Scand. 1961 Sep;53:46–57. doi: 10.1111/j.1748-1716.1961.tb02262.x. [DOI] [PubMed] [Google Scholar]
  11. FRAENKEL-CONRAT H., SNELL N. S., DUCAY E. D. Avidin. I. Isolation and characterization of the protein and nucleic acid. Arch Biochem Biophys. 1952 Jul;39(1):80–96. doi: 10.1016/0003-9861(52)90263-4. [DOI] [PubMed] [Google Scholar]
  12. FRANKEL F. R., CRAMPTON C. F. Chromatographic fractionation of deoxyribonucleic acids. J Biol Chem. 1962 Oct;237:3200–3206. [PubMed] [Google Scholar]
  13. FREDERIC J., CHEVREMONT M. Recherches sur les chondriosomes de cellules vivantes par la microscopie et la microcinématographie en contraste de phase. Arch Biol (Liege) 1952;63(1):109–131. [PubMed] [Google Scholar]
  14. HOFF-JORGENSEN E., ZEUTHEN E. Evidence of cytoplasmic deoxyribosides in the frog's egg. Nature. 1952 Feb 9;169(4293):245–246. doi: 10.1038/169245a0. [DOI] [PubMed] [Google Scholar]
  15. HOFFMAN H., GRIGG G. W. An electron microscopic study of mitochondria formation. Exp Cell Res. 1958 Aug;15(1):118–131. doi: 10.1016/0014-4827(58)90068-5. [DOI] [PubMed] [Google Scholar]
  16. HOPWOOD D. A., GLAUERT A. M. The fine structure of the nuclear material of a blue-green alga, Anabaena cylindrica Lemm. J Biophys Biochem Cytol. 1960 Dec;8:813–823. doi: 10.1083/jcb.8.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HUXLEY H. E., ZUBAY G. Preferential staining of nucleic acid-containing structures for electron microscopy. J Biophys Biochem Cytol. 1961 Nov;11:273–296. doi: 10.1083/jcb.11.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  19. JURAND A. Activity of nucleases on Paramecium cells fixed with osmium tetroxide. Exp Cell Res. 1961 Oct;25:80–86. doi: 10.1016/0014-4827(61)90308-1. [DOI] [PubMed] [Google Scholar]
  20. KIELLEY R. K. Particle-bound thymidylate kinase in mouse liver, a possible factor in the control of DNA synthesis. Biochem Biophys Res Commun. 1963 Feb 6;10:249–253. doi: 10.1016/0006-291x(63)90425-x. [DOI] [PubMed] [Google Scholar]
  21. LEDERBERG J. Cell genetics and hereditary symbiosis. Physiol Rev. 1952 Oct;32(4):403–430. doi: 10.1152/physrev.1952.32.4.403. [DOI] [PubMed] [Google Scholar]
  22. LEDUC E. H., BERNHARD W. Ultrastructural cytochemistry. Enzyme and acid hydrolysis of nucleic acids and protein. J Biophys Biochem Cytol. 1961 Jul;10:437–455. doi: 10.1083/jcb.10.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWTHER D. A., GREEN N. M., CHAPMAN J. A. Morphological and chemical studies of collagen formation. II. Metabolic activity of collagen associated with subcellular fractions of guinea pig granulomata. J Biophys Biochem Cytol. 1961 Jul;10:373–388. doi: 10.1083/jcb.10.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MARINOZZI V., GAUTIER A. [Ultrastructural cytochemical tests on the role of reduced osmium in electronic "stainings"]. C R Hebd Seances Acad Sci. 1961 Sep 4;253:1180–1182. [PubMed] [Google Scholar]
  25. MARR A. G. Enzyme localization in bacteria. Annu Rev Microbiol. 1960;14:241–260. doi: 10.1146/annurev.mi.14.100160.001325. [DOI] [PubMed] [Google Scholar]
  26. MARTIN E. M., MORTON R. K. The chemical composition of microsomes and mitochondria from silver beet. Biochem J. 1956 Oct;64(2):221–235. doi: 10.1042/bj0640221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. NASS M. M., NASS S. Fibrous structures within the matrix of developing chick embryo mitochondria. Exp Cell Res. 1962 Mar;26:424–427. doi: 10.1016/0014-4827(62)90194-5. [DOI] [PubMed] [Google Scholar]
  28. NASS M. M., NASS S. INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS. I. FIXATION AND ELECTRON STAINING REACTIONS. J Cell Biol. 1963 Dec;19:593–611. doi: 10.1083/jcb.19.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. NORTH R. J., POLLAK J. K. An electron microscope study on the variation of nuclear-mitochondrial proximity in developing chick liver. J Ultrastruct Res. 1961 Oct;5:497–503. doi: 10.1016/s0022-5320(61)80023-3. [DOI] [PubMed] [Google Scholar]
  30. RIS H., SINGH R. N. Electron microscope studies on blue-green algae. J Biophys Biochem Cytol. 1961 Jan;9:63–80. doi: 10.1083/jcb.9.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROODYN D. B., REIS P. J., WORK T. S. Protein synthesis in mitochondria. Requirements for the incorporation of radioactive amino acids into mitochondrial protein. Biochem J. 1961 Jul;80:9–21. doi: 10.1042/bj0800009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SMITH-SONNEBORN J., GREEN L., MARMUR J. Deoxyribonucleic acid base composition of kappa and Paramecium aurelia, stock 51. Nature. 1963 Jan 26;197:385–385. doi: 10.1038/197385a0. [DOI] [PubMed] [Google Scholar]
  33. STEINERT G., FIRKET H., STEINERT M. Synthèse d'acide désoxyribonucléique dans le corps parabasal de Trypanosoma mega. Exp Cell Res. 1958 Dec;15(3):632–635. doi: 10.1016/0014-4827(58)90117-4. [DOI] [PubMed] [Google Scholar]
  34. SUEOKA N., CHENG T. Y. Fractionation of nucleic acids with the methylated albumin column. J Mol Biol. 1962 Mar;4:161–172. doi: 10.1016/s0022-2836(62)80048-5. [DOI] [PubMed] [Google Scholar]
  35. TRUMAN D. E., KORNER A. Incorporation of amino acids into the protein of isolated mitochondria. A search for optimum conditions and a relationship to oxidative phosphorylation. Biochem J. 1962 Jun;83:588–596. doi: 10.1042/bj0830588. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES