Abstract
The zonal ultracentrifuge has been used to separate the major components of rat liver brei (soluble phase, ribosomes, microsomes, mitochondria, membranous fragments, and nuclei) during one centrifugation, by using a 1200 ml sucrose gradient varying linearly with radius from 17 to 55 per cent (w/w) with a "cushion" of 66 per cent sucrose at the rotor edge at speeds up to 30,000 RPM. Liver brei was found to contain a family of phosphatases (phenol disodium phosphate substrate, sodium malonate buffers and Turgitol NPX, a non-ionic detergent). Activity maxima at pH 4.1 and 5.9 were observed in untreated brei prepared in 0.25 M sucrose. The addition of the non-ionic detergent Turgitol NPX selectively caused the release of considerable additional activity between these optima. The activity measured at pH 4.1 was primarily associated with the cytoplasmic granules, while the activities at pH 4.8, 5.4 and 5.9 were found in both soluble phase and particulate-mitochondria and membranous fractions. The activities present beyond the region of the gradient occupied by the soluble phase (sample layer) were all bound to particles sedimentable at 105,536 g (average) in the preparative ultracentrifuge. The data suggest that the different activities are not similarly distributed between soluble phase and particulate fractions. When the data are expressed in terms of specific activity, the area in the gradient between the microsomes and mitochondria now appears richest in all the acid phenyl phosphatase activities measured, while the soluble phase and larger particulate fractions appear relatively poor in activity. This part of the gradient is occupied by small, dense granules which may be the so called lysosomes. Pretreatment of the brei with Turgitol NPX prior to fractionation in the zonal ultracentrifuge resulted in the solubilization of acid phenyl phosphatase activities (almost all the activity was in the sample zone of the gradient) and the non-specific destruction of the formed elements of the brei. Essentially all of the activities present in the original brei measured under these conditions were recovered after zonal ultracentrifuge fractionations.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON N. G., FISHER W. D., ANDERSON M. L. Studies on isolated cell components. XV. The distribution of certain enzymes in the electrophoretic pattern of the soluble phase of rat liver. Exp Cell Res. 1961 Mar;23:318–323. doi: 10.1016/0014-4827(61)90041-6. [DOI] [PubMed] [Google Scholar]
- ANDERSON N. G. Studies on isolated cell components. VII. A reexamination of the preparation and properties of rat liver homogenates. Exp Cell Res. 1955 Feb;8(1):91–100. doi: 10.1016/0014-4827(55)90045-8. [DOI] [PubMed] [Google Scholar]
- Abul-Fadl M. A., King E. J. Properties of the acid phosphatases of erythrocytes and of the human prostate gland. Biochem J. 1949;45(1):51–60. [PMC free article] [PubMed] [Google Scholar]
- BARKA T. Studies on acid phosphatases. II. Chromatographic separation of acid phosphatases of rat liver. J Histochem Cytochem. 1961 Sep;9:564–571. doi: 10.1177/9.5.564. [DOI] [PubMed] [Google Scholar]
- BEAUFAY H., DE DUVE C. Le système hexose-phosphatasique. IV. Spécificité de la glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1525–1537. [PubMed] [Google Scholar]
- BEAUFAY H., DE DUVE C. Le système hexose-phosphatasique. VI. Essais de démembrement des microsomes porteurs de glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1551–1568. [PubMed] [Google Scholar]
- BEAUFAY H., HERS H. G., BERTHET J., DE DUVE C. Le sustème hexose-phosphatasique. V. Influence de divers agents sur l'activité et la stabilité de la glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1539–1550. [PubMed] [Google Scholar]
- BERTHET J., BERTHET L., APPELMANS F., DE DUVE C. Tissue fractionation studies. II. The nature of the linkage between acid phosphatase and mitochondria in rat-liver tissue. Biochem J. 1951 Dec;50(2):182–189. doi: 10.1042/bj0500182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERTHET J., DE DUVE C. Tissue fractionation studies. I. The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem J. 1951 Dec;50(2):174–181. doi: 10.1042/bj0500174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE DUVE C., BEAUFAY H., JACQUES P., RAHMAN-LI Y., SELLINGER O. Z., WATTIAUX R., DE CONINCK S. Intracellular localization of catalase and of some oxidases in rat liver. Biochim Biophys Acta. 1960 May 6;40:186–187. doi: 10.1016/0006-3002(60)91338-x. [DOI] [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE DUVE C., WATTIAUX R., BAUDHUIN P. Distribution of enzymes between subcellular fractions in animal tissues. Adv Enzymol Relat Subj Biochem. 1962;24:291–358. doi: 10.1002/9780470124888.ch6. [DOI] [PubMed] [Google Scholar]
- ESSNER E., NOVIKOFF A. B. Localization of acid phosphatase activity in hepatic lysosomes by means of electron microscopy. J Biophys Biochem Cytol. 1961 Apr;9:773–784. doi: 10.1083/jcb.9.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHMAN W. H., DAVIDSON H. M. Determination of serum acid phosphatases. Methods Biochem Anal. 1957;4:257–284. doi: 10.1002/9780470110201.ch7. [DOI] [PubMed] [Google Scholar]
- GOODLAD G. A., MILLS G. T. The acid phosphatases of rat liver. Biochem J. 1957 Jun;66(2):346–354. doi: 10.1042/bj0660346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLT S. J., HICKS R. M. Studies on formalin fixation for electron microscopy and cytochemical staining purposes. J Biophys Biochem Cytol. 1961 Oct;11:31–45. doi: 10.1083/jcb.11.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIND P. R., KING E. J. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol. 1954 Nov;7(4):322–326. doi: 10.1136/jcp.7.4.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King E. J., Delory G. E. The rates of enzymic hydrolysis of phosphoric esters. Biochem J. 1939 Aug;33(8):1185–1190. doi: 10.1042/bj0331185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARSH W. H., FINGERHUT B., KIRSCH E. Adaptation of an alkaline phosphatase method for automatic colorimetric analysis. Clin Chem. 1959 Apr;5(2):119–126. [PubMed] [Google Scholar]
- NOVIKOFF A. B., BEAUFAY H., DE DUVE C. Electron microscopy of lysosomerich fractions from rat liver. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):179–184. [PMC free article] [PubMed] [Google Scholar]
- NOVIKOFF A. B., ESSNER E. The liver cell. Some new approaches to its study. Am J Med. 1960 Jul;29:102–131. doi: 10.1016/0002-9343(60)90011-5. [DOI] [PubMed] [Google Scholar]
- POWELL M. E., SMITH M. J. The determination of serum acid and alkaline phosphatase activity with 4-aminoantipyrine (A.A.P.). J Clin Pathol. 1954 Aug;7(3):245–248. doi: 10.1136/jcp.7.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REID E., NODES J. T. Liver ribonucleases. Ann N Y Acad Sci. 1959 Sep 4;81:618–633. doi: 10.1111/j.1749-6632.1959.tb49342.x. [DOI] [PubMed] [Google Scholar]
- TSUBOI K. K. Phosphomonoesterase activity in hepatic tissues of the mouse. Biochim Biophys Acta. 1952 Feb;8(2):173–186. doi: 10.1016/0006-3002(52)90027-9. [DOI] [PubMed] [Google Scholar]