Abstract
Oocytes in primordial and primary follicles of young adult guinea pig ovaries fixed in osmium tetroxide and embedded in Epon 812, have been observed by electron microscopy. The gradual differentiation of a series of cytoplasmic organelles has been correlated with the growth in size of the oocyte and the development of the follicular wall. The most immature primordial oocyte is morphologically a simple cell consisting of a large slightly eccentric nucleus, a few large spherical mitochondria, a profusion of granular cytoplasmic vesicles, and free RNP particles. At the primary follicle stage, abundant endoplasmic reticulum, clusters of mitochondria proliferating around a rosette formation, multiple Golgi complexes, vesicular aggregates forming cortical granules, and a profusion of microvilli have been differentiated. Concentrations of cytoplasmic organelles at the periphery of the oocyte in the primary follicle suggest that it is equipped for the absorption, utilization, and intracellular transport of material delivered to its surface membrane. The juxtaposition of components of the ultrastructure during the development and growth of this large cell appears to follow a precise pattern and provides an unusual opportunity to study the interrelationships of differentiating organelles.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AFZELIUS B. A. Electron microscopy on the basophilic structures of the sea urchin egg. Z Zellforsch Mikrosk Anat. 1957;45(6):660–675. doi: 10.1007/BF00338710. [DOI] [PubMed] [Google Scholar]
- ANDERSON E., BEAMS H. W. Cytological observations on the fine structure of the guinea pig ovary with special reference to the oogonium, primary oocyte and associated follicle cells. J Ultrastruct Res. 1960 Jun;3:432–446. doi: 10.1016/s0022-5320(60)90021-6. [DOI] [PubMed] [Google Scholar]
- AUSTIN C. R. Cortical granules in hamster eggs. Exp Cell Res. 1956 Apr;10(2):533–540. doi: 10.1016/0014-4827(56)90025-8. [DOI] [PubMed] [Google Scholar]
- CAULFIELD J. B. Effects of varying the vehicle for OsO4 in tissue fixation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):827–830. doi: 10.1083/jcb.3.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHIQUOINE A. D. The development of the zona pellucida of the mammalian ovum. Am J Anat. 1960 Mar;106:149–169. doi: 10.1002/aja.1001060207. [DOI] [PubMed] [Google Scholar]
- HADEK R. Submicroscopic study on the cortical granules in the rabbit ovum. J Ultrastruct Res. 1963 Feb;8:170–175. doi: 10.1016/s0022-5320(63)80028-3. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ODOR D. L. Electron microscopic studies on ovarian oocytes and unfertilized tubal ova in the rat. J Biophys Biochem Cytol. 1960 Jun;7:567–574. doi: 10.1083/jcb.7.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORNSTEIN L. Mitochondrial and nuclear interaction. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):351–352. doi: 10.1083/jcb.2.4.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOROKIN S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962 Nov;15:363–377. doi: 10.1083/jcb.15.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOTELO J. R., PORTER K. R. An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 1959 Mar 25;5(2):327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOTELO J. R., TRUJILLO-CENOZ O. Electron microscope study of the vitelline body of some spider oocytes. J Biophys Biochem Cytol. 1957 Mar 25;3(2):301–310. doi: 10.1083/jcb.3.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADDINGTON C. H., OKADA E. Some degenerative phenomena in Drosophila ovaries. J Embryol Exp Morphol. 1960 Sep;8:341–348. [PubMed] [Google Scholar]
