Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Jan;170(1):272–278. doi: 10.1128/jb.170.1.272-278.1988

Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus.

H Horiuchi 1, K Yanai 1, T Okazaki 1, M Takagi 1, K Yano 1
PMCID: PMC210638  PMID: 3275615

Abstract

A gene encoding Rhizopus niveus aspartic proteinase was isolated from an R. niveus genomic library by using oligonucleotides probes corresponding to its partial amino acid sequence, and its nucleotide sequence was determined. By comparing its deduced amino acid sequence with the amino acid sequence of rhizopuspepsin (5, 26), we concluded that the R. niveus aspartic proteinase gene has an intron within its coding region and that it has a preproenzyme sequence of 66 amino acids upstream of the mature enzyme of 323 amino acids.

Full text

PDF
272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bott R., Subramanian E., Davies D. R. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-A resolution. Biochemistry. 1982 Dec 21;21(26):6956–6962. doi: 10.1021/bi00269a052. [DOI] [PubMed] [Google Scholar]
  2. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  3. Clarke L., Carbon J. Functional expression of cloned yeast DNA in Escherichia coli: specific complementation of argininosuccinate lyase (argH) mutations. J Mol Biol. 1978 Apr 25;120(4):517–532. doi: 10.1016/0022-2836(78)90351-0. [DOI] [PubMed] [Google Scholar]
  4. Delaney R., Wong R. N., Meng G. Z., Wu N. H., Tang J. Amino acid sequence of rhizopuspepsin isozyme pI 5. J Biol Chem. 1987 Feb 5;262(4):1461–1467. [PubMed] [Google Scholar]
  5. Efstratiadis A., Posakony J. W., Maniatis T., Lawn R. M., O'Connell C., Spritz R. A., DeRiel J. K., Forget B. G., Weissman S. M., Slightom J. L. The structure and evolution of the human beta-globin gene family. Cell. 1980 Oct;21(3):653–668. doi: 10.1016/0092-8674(80)90429-8. [DOI] [PubMed] [Google Scholar]
  6. Etoh Y., Shoun H., Arima K., Beppu T. Photo-oxidation of a histidyl residue of milk-clotting acid protease, Mucor rennin. J Biochem. 1982 Mar;91(3):747–753. doi: 10.1093/oxfordjournals.jbchem.a133761. [DOI] [PubMed] [Google Scholar]
  7. Etoh Y., Shoun H., Ogino T., Fujiwara S., Arima K., Beppu T. Proton magnetic resonance spectroscopy of an essential histidyl residue in a milk-clotting acid protease, Mucor rennin. J Biochem. 1982 Jun;91(6):2039–2046. doi: 10.1093/oxfordjournals.jbchem.a133897. [DOI] [PubMed] [Google Scholar]
  8. Gray G. L., Hayenga K., Cullen D., Wilson L. J., Norton S. Primary structure of Mucor miehei aspartyl protease: evidence for a zymogen intermediate. Gene. 1986;48(1):41–53. doi: 10.1016/0378-1119(86)90350-1. [DOI] [PubMed] [Google Scholar]
  9. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hidaka M., Sasaki K., Uozumi T., Beppu T. Cloning and structural analysis of the calf prochymosin gene. Gene. 1986;43(3):197–203. doi: 10.1016/0378-1119(86)90207-6. [DOI] [PubMed] [Google Scholar]
  11. Hynes M. J., Corrick C. M., King J. A. Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol Cell Biol. 1983 Aug;3(8):1430–1439. doi: 10.1128/mcb.3.8.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ichihara Y., Sogawa K., Morohashi K., Fujii-Kuriyama Y., Takahashi K. Nucleotide sequence of a nearly full-length cDNA coding for pepsinogen of rat gastric mucosa. Eur J Biochem. 1986 Nov 17;161(1):7–12. doi: 10.1111/j.1432-1033.1986.tb10117.x. [DOI] [PubMed] [Google Scholar]
  13. James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
  14. Langford C. J., Gallwitz D. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell. 1983 Jun;33(2):519–527. doi: 10.1016/0092-8674(83)90433-6. [DOI] [PubMed] [Google Scholar]
  15. Nunberg J. H., Meade J. H., Cole G., Lawyer F. C., McCabe P., Schweickart V., Tal R., Wittman V. P., Flatgaard J. E., Innis M. A. Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori. Mol Cell Biol. 1984 Nov;4(11):2306–2315. doi: 10.1128/mcb.4.11.2306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oka T., Morihara K. Comparative specificity of microbial acid proteinases for synthetic peptides. I. Primary specificity. Arch Biochem Biophys. 1973 Jun;156(2):543–551. doi: 10.1016/0003-9861(73)90303-2. [DOI] [PubMed] [Google Scholar]
  17. Oka T., Morihara K. Comparative specificity of microbial acid proteinases for synthetic peptides. Primary specificity with Z-tetrapeptides. Arch Biochem Biophys. 1974 Nov;165(1):65–71. doi: 10.1016/0003-9861(74)90142-8. [DOI] [PubMed] [Google Scholar]
  18. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sogawa K., Fujii-Kuriyama Y., Mizukami Y., Ichihara Y., Takahashi K. Primary structure of human pepsinogen gene. J Biol Chem. 1983 Apr 25;258(8):5306–5311. [PubMed] [Google Scholar]
  21. Subramanian E., Swan I. D., Liu M., Davies D. R., Jenkins J. A., Tickle I. J., Blundell T. L. Homology among acid proteases: comparison of crystal structures at 3A resolution of acid proteases from Rhizopus chinensis and Endothia parasitica. Proc Natl Acad Sci U S A. 1977 Feb;74(2):556–559. doi: 10.1073/pnas.74.2.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takahashi K. The amino acid sequence of rhizopuspepsin, an aspartic proteinase from Rhizopus chinensis. J Biol Chem. 1987 Feb 5;262(4):1468–1478. [PubMed] [Google Scholar]
  23. Tonouchi N., Shoun H., Uozumi T., Beppu T. Cloning and sequencing of a gene for Mucor rennin, an aspartate protease from Mucor pusillus. Nucleic Acids Res. 1986 Oct 10;14(19):7557–7568. doi: 10.1093/nar/14.19.7557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wallace R. B., Johnson M. J., Hirose T., Miyake T., Kawashima E. H., Itakura K. The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit beta-globin DNA. Nucleic Acids Res. 1981 Feb 25;9(4):879–894. doi: 10.1093/nar/9.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  26. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES