Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1964 Feb 1;20(2):281–296. doi: 10.1083/jcb.20.2.281

FURTHER OBSERVATIONS ON THE STRUCTURE OF MYELIN SHEATHS IN THE CENTRAL NERVOUS SYSTEM

A Peters 1
PMCID: PMC2106395  PMID: 14126873

Abstract

Direct evidence has been presented to confirm the existence of a spiral in the myelin sheaths of the central nervous system. An account of some of the variations in structure of central myelin sheaths has been given and it has been shown that the radial component of myelin sheaths has the form of a series of rod-like thickenings of the intraperiod line. These thickenings extend along the intraperiod line in a direction parallel to the length of the axon. The relative position of the internal mesaxon and external tongue of cytoplasm has been determined in a number of transverse sections of sheaths from the optic nerves of adult mice, adult rats, and young rats. In about 75 per cent of the mature sheaths examined, these two structures were found within the same quadrant of the sheath, so that the cytoplasm of the external tongue process tends to lie directly outside that associated with the internal mesaxon. The frequency with which the internal mesaxon and external tongue lie within the same quadrant of the sheath increases both with the age of the animal and with the number of lamellae present within a sheath. The possible significance of these findings is discussed.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  2. BUNGE M. B., BUNGE R. P., RIS H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol. 1961 May;10:67–94. doi: 10.1083/jcb.10.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DE ROBERTIS E., GERSCHENFELD H. M., WALD F. Cellular mechanism of myelination in the central nervous system. J Biophys Biochem Cytol. 1958 Sep 25;4(5):651–656. doi: 10.1083/jcb.4.5.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. LUSE S. A. Formation of myelin in the central nervous system of mice and rats, as studied with the electron microscope. J Biophys Biochem Cytol. 1956 Nov 25;2(6):777–784. doi: 10.1083/jcb.2.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. METUZALS J. Ultrastructure of myelinated nerve fibers in the central nervous system of the frog. J Ultrastruct Res. 1963 Feb;8:30–47. doi: 10.1016/s0022-5320(63)80019-2. [DOI] [PubMed] [Google Scholar]
  6. PETERS A. A radial component of central myelin sheaths. J Biophys Biochem Cytol. 1961 Dec;11:733–735. doi: 10.1083/jcb.11.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PETERS A. Plasma membrane contacts in the central nervous system. J Anat. 1962 Apr;96:237–248. [PMC free article] [PubMed] [Google Scholar]
  8. PETERS A. The formation and structure of myelin sheaths in the central nervous system. J Biophys Biochem Cytol. 1960 Oct;8:431–446. doi: 10.1083/jcb.8.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PETERS A. The structure of myelin sheaths in the central nervous system of Xenopus laevis (Daudin). J Biophys Biochem Cytol. 1960 Feb;7:121–126. doi: 10.1083/jcb.7.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ROBERTSON D. M., VOGEL F. S. Concentric lamination of glial processes in oligodendrogliomas. J Cell Biol. 1962 Nov;15:313–334. doi: 10.1083/jcb.15.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROBERTSON J. D. The ultrastructure of Schmidt-Lanterman clefts and related shearing defects of the myelin sheath. J Biophys Biochem Cytol. 1958 Jan 25;4(1):39–46. doi: 10.1083/jcb.4.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ROBERTSON J. D. The ultrastructure of adult vertebrate peripheral myelinated nerve fibers in relation to myelinogenesis. J Biophys Biochem Cytol. 1955 Jul 25;1(4):271–278. doi: 10.1083/jcb.1.4.271. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES