Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Jan;170(1):308–315. doi: 10.1128/jb.170.1.308-315.1988

Isolation and characterization of an Escherichia coli K-12 mutant deficient in glutaredoxin.

B Kren 1, D Parsell 1, J A Fuchs 1
PMCID: PMC210643  PMID: 3275617

Abstract

Mutants of Escherichia coli K-12 deficient in glutaredoxin were isolated and partially characterized. The mutants have detectable but significantly reduced glutaredoxin activity in assays of whole cells made permeable with ether as well as in assays of crude extracts coupled to ribonucleotide reductase. In vivo, the mutants appear to be deficient in both sulfate and ribonucleotide reduction, suggesting that in vivo glutaredoxin is the preferred cofactor for ribonucleotide reductase and adenosine 3'-phosphate 5'-phosphosulfate reductase. Complementation of the mutant phenotype by transformants was used to clone the wild-type glutaredoxin allele. The transformants had a high level of glutaredoxin activity and contained a plasmid with an insert that had a restriction endonuclease pattern identical to that predicted by the DNA sequence for glutaredoxin determined by Hoog et al. (J.-O. Hoog, H. von Bahr-Lindstrom, H. Jornvall, and A. Holmgren, Gene 43:13-21, 1986).

Full text

PDF
308

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apontoweil P., Berends W. Isolation and initial characterization of glutathione-deficient mutants of Escherichia coli K 12. Biochim Biophys Acta. 1975 Jul 14;399(1):10–22. doi: 10.1016/0304-4165(75)90206-8. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Carlson J., Fuchs J. A., Messing J. Primary structure of the Escherichia coli ribonucleoside diphosphate reductase operon. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4294–4297. doi: 10.1073/pnas.81.14.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiu C. S., Cox S. M., Greenberg G. R. Effect of bacteriophage T4 nrd mutants on deoxyribonucleotide synthesis in vivo. J Biol Chem. 1980 Apr 10;255(7):2747–2751. [PubMed] [Google Scholar]
  5. Clark D. J. Regulation of deoxyribonucleic acid replication and cell division in Escherichia coli B-r. J Bacteriol. 1968 Oct;96(4):1214–1224. doi: 10.1128/jb.96.4.1214-1224.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csonka L. N., Clark A. J. Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol. 1980 Jul;143(1):529–530. doi: 10.1128/jb.143.1.529-530.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daws T. D., Fuchs J. A. Isolation and characterization of an Escherichia coli mutant deficient in dTMP kinase activity. J Bacteriol. 1984 Feb;157(2):440–444. doi: 10.1128/jb.157.2.440-444.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eriksson S., Sjöberg B. M., Hahne S. Ribonucleoside diphosphate reductase from Escherichia coli. An immunological assay and a novel purification from an overproducing strain lysogenic for phage lambdadnrd. J Biol Chem. 1977 Sep 10;252(17):6132–6138. [PubMed] [Google Scholar]
  10. Filpula D., Fuchs J. A. Regulation of ribonucleoside diphosphate reductase synthesis in Escherichia coli: increased enzyme synthesis as a result of inhibition of deoxyribonucleic acid synthesis. J Bacteriol. 1977 Apr;130(1):107–113. doi: 10.1128/jb.130.1.107-113.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuchs J. A., Karlström H. O. A mutant of Escherichia coli defective in ribonucleosidediphosphate reductase. 2. Characterization of the enzymatic defect. Eur J Biochem. 1973 Feb 1;32(3):457–462. [PubMed] [Google Scholar]
  12. Fuchs J. A., Warner H. R. Isolation of an Escherichia coli mutant deficient in glutathione synthesis. J Bacteriol. 1975 Oct;124(1):140–148. doi: 10.1128/jb.124.1.140-148.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fuchs J. Isolation of an Escherichia coli mutant deficient in thioredoxin reductase. J Bacteriol. 1977 Feb;129(2):967–972. doi: 10.1128/jb.129.2.967-972.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haller B. L., Fuchs J. A. Mapping of trxB, a mutation responsible for reduced thioredoxin reductase activity. J Bacteriol. 1984 Sep;159(3):1060–1062. doi: 10.1128/jb.159.3.1060-1062.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J Biol Chem. 1979 May 10;254(9):3672–3678. [PubMed] [Google Scholar]
  16. Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem. 1979 May 10;254(9):3664–3671. [PubMed] [Google Scholar]
  17. Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275–2279. doi: 10.1073/pnas.73.7.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem. 1979 Oct 10;254(19):9627–9632. [PubMed] [Google Scholar]
  19. Hög J. O., Jörnvall H., Holmgren A., Carlquist M., Persson M. The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol. Eur J Biochem. 1983 Oct 17;136(1):223–232. doi: 10.1111/j.1432-1033.1983.tb07730.x. [DOI] [PubMed] [Google Scholar]
  20. Hög J. O., von Bahr-Lindström H., Jörnvall H., Holmgren A. Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli. Gene. 1986;43(1-2):13–21. doi: 10.1016/0378-1119(86)90003-x. [DOI] [PubMed] [Google Scholar]
  21. LAURENT T. C., MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3436–3444. [PubMed] [Google Scholar]
  22. Lunn C. A., Pigiet V. P. Localization of thioredoxin from Escherichia coli in an osmotically sensitive compartment. J Biol Chem. 1982 Oct 10;257(19):11424–11430. [PubMed] [Google Scholar]
  23. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  24. Mark D. F., Chase J. W., Richardson C. C. Genetic mapping of trxA, a gene affecting thioredoxin in Escherichia coli K12. Mol Gen Genet. 1977 Oct 20;155(2):145–152. doi: 10.1007/BF00393153. [DOI] [PubMed] [Google Scholar]
  25. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  26. Nygren H., Rozell B., Holmgren A., Hansson H. A. Immunoelectron microscopic localization of glutaredoxin and thioredoxin in Escherichia coli cells. FEBS Lett. 1981 Oct 12;133(1):145–150. doi: 10.1016/0014-5793(81)80492-9. [DOI] [PubMed] [Google Scholar]
  27. Pritchard R. H., Zaritsky A. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature. 1970 Apr 11;226(5241):126–131. doi: 10.1038/226126a0. [DOI] [PubMed] [Google Scholar]
  28. Ray P., Sinha N. K., Warner H. R., Snustad D. P. Genetic location of a mutant of bacteriophage T4 deficient in the ability to induce endonuclease II. J Virol. 1972 Jan;9(1):184–186. doi: 10.1128/jvi.9.1.184-186.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Russel M., Model P. Direct cloning of the trxB gene that encodes thioredoxin reductase. J Bacteriol. 1985 Jul;163(1):238–242. doi: 10.1128/jb.163.1.238-242.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsang M. L. Assimilatory sulfate reduction in Escherichia coli: identification of the alternate cofactor for adenosine 3'-phosphate 5'-phosphosulfate reductase as glutaredoxin. J Bacteriol. 1981 Jun;146(3):1059–1066. doi: 10.1128/jb.146.3.1059-1066.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tsang M. L., Schiff J. A. Sulfate-reducing pathway in Escherichia coli involving bound intermediates. J Bacteriol. 1976 Mar;125(3):923–933. doi: 10.1128/jb.125.3.923-933.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tuggle C. K., Fuchs J. A. Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J Bacteriol. 1985 Apr;162(1):448–450. doi: 10.1128/jb.162.1.448-450.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Warner H. R. Properties of ribonucleoside diphosphate reductase in nucleotide-permeable cells. J Bacteriol. 1973 Jul;115(1):18–22. doi: 10.1128/jb.115.1.18-22.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Warner H. R., Snustad P., Jorgensen S. E., Koerner J. F. Isolation of bacteriophage T4 mutants defective in the ability to degrade host deoxyribonucleic acid. J Virol. 1970 Jun;5(6):700–708. doi: 10.1128/jvi.5.6.700-708.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yeh Y. C., Dubovi E. J., Tessman I. Control of pyrimidine biosynthesis by phage T4: mutants unable to catalyze the reduction of cytidine diphosphate. Virology. 1969 Apr;37(4):615–623. doi: 10.1016/0042-6822(69)90279-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES