Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1964 May 1;21(2):275–281. doi: 10.1083/jcb.21.2.275

CELL DIVISION AND DNA SYNTHESIS IN TETRAHYMENA PYRIFORMIS DEPRIVED OF ESSENTIAL AMINO ACIDS

G E Stone 1, D M Prescott 1
PMCID: PMC2106443  PMID: 14159030

Abstract

The question of amino acid requirements for DNA synthesis and cell division has been studied in Tetrahymena pyriformis by depriving cells of histidine and tryptophan at defined stages in the interdivision interval. Deprivation any time before DNA synthesis does not prevent the initiation of such synthesis but completely inhibits the following division and limits the increase in DNA, as measured microspectrophotometrically, to 20 per cent. H3-thymidine added to the medium is not incorporated during the 20 per cent increase. Deprivation after DNA synthesis is initiated does not prevent the continuation (to completion) of DNA synthesis, and cell division ensues. H3-thymidine added to the medium under these conditions is incorporated into macronuclear DNA. The data indicate that some amino acid-dependent event occurs, about the time of the beginning of the DNA synthesis period, which is not essential for initiation of DNA synthesis but which is essential for the maintenance of synthesis once it has begun. These results are further discussed in terms of enzymes required to convert thymidine (and possibly the other three deoxyribonucleosides) to the immediate precursor of DNA synthesis.

Full Text

The Full Text of this article is available as a PDF (521.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HANAWALT P. C., MAALOE O., CUMMINGS D. J., SCHAECHTER M. The normal DNA replication cycle. II. J Mol Biol. 1961 Apr;3:156–165. doi: 10.1016/s0022-2836(61)80042-9. [DOI] [PubMed] [Google Scholar]
  2. Hotta Y., Stern H. MOLECULAR FACETS OF MITOTIC REGULATION, I. SYNTHESIS OF THYMIDINE KINASE. Proc Natl Acad Sci U S A. 1963 May;49(5):648–654. doi: 10.1073/pnas.49.5.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
  4. PATAU K. Absorption microphotometry of irregular-shaped objects. Chromosoma. 1952;5(4):341–362. doi: 10.1007/BF01271492. [DOI] [PubMed] [Google Scholar]
  5. SEAMAN G. R. Large-scale isolation of kinetosomes from the ciliated protozoan Tetrahymena pyriformis. Exp Cell Res. 1960 Nov;21:292–302. doi: 10.1016/0014-4827(60)90261-5. [DOI] [PubMed] [Google Scholar]
  6. WU C., HOGG J. F. Free and nonprotein amino acids of Tetrahymena pyriformis. Arch Biochem Biophys. 1956 May;62(1):70–77. doi: 10.1016/0003-9861(56)90088-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES