Abstract
Etiolated bean leaves supplied δ-amino-levulinic acid in the dark synthesize large amounts of protochlorophyllide which is not converted to chlorophyllide upon illumination of the leaves. The fine structure of the proplastids is not affected by the treatment. When leaves containing "inactive" protochlorophyllide are exposed to light of 700 ft-c for 3 hours, they lose practically all their green pigments. During this period large stacks of closed membrane structures are built up in the region of the prolamellar body. These lamellar structures remain even when no or only traces of pigment are left in the leaves. In untreated control leaves the pigment content remained constant during similar illumination and the structural changes in the plastids consisted of a rearrangement of the vesicles from the prolamellar bodies into strands dispersed through the stroma; lamellae and grana formation occurred later.
Full Text
The Full Text of this article is available as a PDF (812.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- EILAM Y., KLEIN S. The effect of light intensity and sucrose feeding on the fine structure in chloroplasts and on the chlorophyll content of etiolated leaves. J Cell Biol. 1962 Aug;14:169–182. doi: 10.1083/jcb.14.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEIN S., POLJAKOFF-MAYBER A. Fine structure and pigment conversion in isolated etiolated proplastids. J Biophys Biochem Cytol. 1961 Nov;11:433–440. doi: 10.1083/jcb.11.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEIN S. The effect of low temperature on the development of the lamellar system in chloroplasts. J Biophys Biochem Cytol. 1960 Oct;8:529–538. doi: 10.1083/jcb.8.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLFF J. B., PRICE L. Terminal steps of chlorophyll A biosynthesis in higher plants. Arch Biochem Biophys. 1957 Dec;72(2):293–301. doi: 10.1016/0003-9861(57)90205-9. [DOI] [PubMed] [Google Scholar]