Abstract
Histone synthesis during spermiogenesis in the grasshopper Chortophaga viridifasciata was studied using autoradiographic and cytochemical methods. It was found that meiosis is followed by a cessation of RNA synthesis, an elimination of RNA from the nucleus, and, during the cytoplasmic sloughing accompanying the initial cytoplasmic elongation, a loss of most of the RNA from the cell. The initial phase of cell elongation results in a long spermatid headed by a spherical RNA-less nucleus bounded by a thin RNA-containing layer of cytoplasm. Subsequent nuclear elongation is accompanied by a replacement of the typical histones by others rich in arginine. This replacement is the result of synthesis of new protein. Incorporation of arginine is first seen to occur in the thin cytoplasmic layer surrounding the nucleus. This layer was shown by staining and electron microscopy to contain aggregations of ribosome-like particles. These observations support the conclusion that the histone is synthesized in association with the RNA granules in the cytoplasm, then migrates into the nucleus where it combines with the DNA.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALFERT M. Chemical differentiation of nuclear proteins during spermatogenesis in the salmon. J Biophys Biochem Cytol. 1956 Mar 25;2(2):109–114. doi: 10.1083/jcb.2.2.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALLFREY V. G., MIRSKY A. E., OSAWA S. Protein synthesis in isolated cell nuclei. J Gen Physiol. 1957 Jan 20;40(3):451–490. doi: 10.1085/jgp.40.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alfert M., Geschwind I. I. A Selective Staining Method for the Basic Proteins of Cell Nuclei. Proc Natl Acad Sci U S A. 1953 Oct;39(10):991–999. doi: 10.1073/pnas.39.10.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLOCH D. P., GODMAN G. C. A microphotometric study of the syntheses of desoxyribonucleic acid and nuclear histone. J Biophys Biochem Cytol. 1955 Jan;1(1):17–28. doi: 10.1083/jcb.1.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLOCH D. P., HEW H. Y. Schedule of spermatogenesis in the pulmonate snail Helix aspersa, with special reference to histone transition. J Biophys Biochem Cytol. 1960 Jun;7:515–532. doi: 10.1083/jcb.7.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DASS C. M., RIS H. Submicroscopic organization of the nucleus during spermiogenesis in the grasshopper. J Biophys Biochem Cytol. 1958 Jan 25;4(1):129–132. doi: 10.1083/jcb.4.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEITCH A. D. An improved Sakaguchi reaction for microspectrophotometric use. J Histochem Cytochem. 1961 Sep;9:477–483. doi: 10.1177/9.5.477. [DOI] [PubMed] [Google Scholar]
- DEITCH A. D. Microspectrophotometric study of the binding of the anionic dye, naphthol yellow S, by tissue sections and by purified proteins. Lab Invest. 1955 Sep-Oct;4(5):324–351. [PubMed] [Google Scholar]
- GALL J. G., BJORK L. B. The spermatid nucleus in two species of grasshopper. J Biophys Biochem Cytol. 1958 Jul 25;4(4):479–484. doi: 10.1083/jcb.4.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALL J. G. Macronuclear duplication in the ciliated protozoan Euplotes. J Biophys Biochem Cytol. 1959 Mar 25;5(2):295–308. doi: 10.1083/jcb.5.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLBROOK D. J., Jr, EVANS J. H., IRVIN J. L. Incorporation of labeled precursors into proteins and nucleic acids of nuclei of regenerating liver. Exp Cell Res. 1962 Oct;28:120–125. doi: 10.1016/0014-4827(62)90319-1. [DOI] [PubMed] [Google Scholar]
- HSU T. C. Differential rate in RNA synthesis between euchromatin and heterochromatin. Exp Cell Res. 1962 Aug;27:332–334. doi: 10.1016/0014-4827(62)90238-0. [DOI] [PubMed] [Google Scholar]
- LIMA-DE-FARIA A. Differential uptake of tritiated thymidine into hetero- and euchromatin in Melanoplus and Secale. J Biophys Biochem Cytol. 1959 Dec;6:457–466. doi: 10.1083/jcb.6.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCLEISH J., BELL L. G., LA COUR L. F., CHAYEN J. The quantitative cytochemical estimation of arginine. Exp Cell Res. 1957 Feb;12(1):120–125. doi: 10.1016/0014-4827(57)90299-9. [DOI] [PubMed] [Google Scholar]
- PRESCOTT D. M., BENDER M. A. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp Cell Res. 1962 Mar;26:260–268. doi: 10.1016/0014-4827(62)90176-3. [DOI] [PubMed] [Google Scholar]
- SHAW E. I. A glutamic acid-glycine medium for prolonged maintenance of high mitotic activity in grasshopper neuroblasts. Exp Cell Res. 1956 Dec;11(3):580–586. doi: 10.1016/0014-4827(56)90167-7. [DOI] [PubMed] [Google Scholar]
- SWIFT H. H. The desoxyribose nucleic acid content of animal nuclei. Physiol Zool. 1950 Jul;23(3):169–198. doi: 10.1086/physzool.23.3.30152074. [DOI] [PubMed] [Google Scholar]
- TAYLOR J. H., McMASTER R. D. Autoradiographic and microphotometric studies of desoxyribose nucleic acid during microgametogenesis in Lilium longiflorum. Chromosoma. 1954;6(6-7):489–521. doi: 10.1007/BF01259951. [DOI] [PubMed] [Google Scholar]
- YASUZUMI G., ISHIDA H. Spermatogenesis in animals as revealed by electron microscopy. II. Submicroscopic structure of developing spermatid nuclei of grasshopper. J Biophys Biochem Cytol. 1957 Sep 25;3(5):663–668. doi: 10.1083/jcb.3.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
