Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Jan;170(1):335–344. doi: 10.1128/jb.170.1.335-344.1988

Cloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis.

R Marrero 1, R E Yasbin 1
PMCID: PMC210647  PMID: 3121588

Abstract

By use of the Bacillus subtilis bacteriophage cloning vehicle phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages phi 105Rec phi 1 (3.85-kilobase insert) and phi 105Rec phi 4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE+ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage phi 105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either phi 105Rec phi 1 or phi 105Rec phi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages phi 105Rec phi 1 and phi 105Rec phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA+ gene product antibodies. Collectively, these data demonstrate that the recE+ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination.

Full text

PDF
335

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Better M., Helinski D. R. Isolation and characterization of the recA gene of Rhizobium meliloti. J Bacteriol. 1983 Jul;155(1):311–316. doi: 10.1128/jb.155.1.311-316.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boice L. B. Evidence that Bacillus subtilis bacteriophage SP02 is temperate and heteroimmune to bacteriophage phi-105. J Virol. 1969 Jul;4(1):47–49. doi: 10.1128/jvi.4.1.47-49.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol. 1972 Apr;110(1):281–290. doi: 10.1128/jb.110.1.281-290.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979 Jan 5;168(1):111–115. doi: 10.1007/BF00267940. [DOI] [PubMed] [Google Scholar]
  5. Cully D. F., Garro A. J. Expression of superinfection immunity to bacteriophage phi 105 by Bacillus subtilis cells carrying a plasmic chimera of pUB110 and EcoRI fragment F of phi 105 DNA. J Virol. 1980 Jun;34(3):789–791. doi: 10.1128/jvi.34.3.789-791.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cully D. F., Garro A. J. Nucleotide sequence of the immunity region of Bacillus subtilis bacteriophage phi 105: identification of the repressor gene and its mRNA and protein products. Gene. 1985;38(1-3):153–164. doi: 10.1016/0378-1119(85)90214-8. [DOI] [PubMed] [Google Scholar]
  7. Dean D. H., Arnaud M., Halvorson H. O. Genetic evidence that Bacillus bacteriophage phi 105 integrates by insertion. J Virol. 1976 Oct;20(1):339–341. doi: 10.1128/jvi.20.1.339-341.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dhaese P., Hussey C., Van Montagu M. Thermo-inducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phage phi 105. Gene. 1984 Dec;32(1-2):181–194. doi: 10.1016/0378-1119(84)90046-5. [DOI] [PubMed] [Google Scholar]
  9. Dubnau D., Davidoff-Abelson R., Scher B., Cirigliano C. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants. J Bacteriol. 1973 Apr;114(1):273–286. doi: 10.1128/jb.114.1.273-286.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Errington J. Efficient Bacillus subtilis cloning system using bacteriophage vector phi 105J9. J Gen Microbiol. 1984 Oct;130(10):2615–2628. doi: 10.1099/00221287-130-10-2615. [DOI] [PubMed] [Google Scholar]
  11. Flock J. I. Deletion mutants of temperate Bacillus subtilis bacteriophage phi105. Mol Gen Genet. 1977 Oct 24;155(3):241–247. doi: 10.1007/BF00272803. [DOI] [PubMed] [Google Scholar]
  12. Friedman B. M., Yasbin R. E. The genetics and specificity of the constitutive excision repair system of Bacillus subtilis. Mol Gen Genet. 1983;190(3):481–486. doi: 10.1007/BF00331080. [DOI] [PubMed] [Google Scholar]
  13. Garro A. J., Law M. F. Relationship between lysogeny, spontaneous induction, and transformation efficiencies in Bacillus subtilis. J Bacteriol. 1974 Dec;120(3):1256–1259. doi: 10.1128/jb.120.3.1256-1259.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldberg I., Mekalanos J. J. Cloning of the Vibrio cholerae recA gene and construction of a Vibrio cholerae recA mutant. J Bacteriol. 1986 Mar;165(3):715–722. doi: 10.1128/jb.165.3.715-722.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keggins K. M., Duvall E. J., Lovett P. S. Recombination between compatible plasmids containing homologous segments requires the Bacillus subtilis recE gene product. J Bacteriol. 1978 May;134(2):514–520. doi: 10.1128/jb.134.2.514-520.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koomey J. M., Falkow S. Cloning of the recA gene of Neisseria gonorrhoeae and construction of gonococcal recA mutants. J Bacteriol. 1987 Feb;169(2):790–795. doi: 10.1128/jb.169.2.790-795.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Love P. E., Lyle M. J., Yasbin R. E. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6201–6205. doi: 10.1073/pnas.82.18.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Love P. E., Yasbin R. E. Genetic characterization of the inducible SOS-like system of Bacillus subtilis. J Bacteriol. 1984 Dec;160(3):910–920. doi: 10.1128/jb.160.3.910-920.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Love P. E., Yasbin R. E. Induction of the Bacillus subtilis SOS-like response by Escherichia coli RecA protein. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5204–5208. doi: 10.1073/pnas.83.14.5204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lovett C. M., Jr, Roberts J. W. Purification of a RecA protein analogue from Bacillus subtilis. J Biol Chem. 1985 Mar 25;260(6):3305–3313. [PubMed] [Google Scholar]
  22. Lovett P. S., Keggins K. M. Bacillus subtilis as a host for molecular cloning. Methods Enzymol. 1979;68:342–357. doi: 10.1016/0076-6879(79)68025-4. [DOI] [PubMed] [Google Scholar]
  23. Marrero R., Chiafari F. A., Lovett P. S. High-frequency elimination of SP02 prophage from Bacillus subtilis by plasmid transformation. J Virol. 1981 Jul;39(1):318–320. doi: 10.1128/jvi.39.1.318-320.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marrero R., Lovett P. S. Interference of plasmid pCM194 with lysogeny of bacteriophage SP02 in Bacillus subtilis. J Bacteriol. 1982 Oct;152(1):284–290. doi: 10.1128/jb.152.1.284-290.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marrero R., Lovett P. S. Transductional selection of cloned bacteriophage phi 105 and SP02 deoxyribonucleic acids in Bacillus subtilis. J Bacteriol. 1980 Aug;143(2):879–886. doi: 10.1128/jb.143.2.879-886.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marrero R., Young F. E., Yasbin R. E. Characterization of interspecific plasmid transfer mediated by Bacillus subtilis temperate bacteriophage SP02. J Bacteriol. 1984 Oct;160(1):458–461. doi: 10.1128/jb.160.1.458-461.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Osburne M. S., Craig R. J., Rothstein D. M. Thermoinducible transcription system for Bacillus subtilis that utilizes control elements from temperate phage phi 105. J Bacteriol. 1985 Sep;163(3):1101–1108. doi: 10.1128/jb.163.3.1101-1108.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Owttrim G. W., Coleman J. R. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis. J Bacteriol. 1987 May;169(5):1824–1829. doi: 10.1128/jb.169.5.1824-1829.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Palefski S., Hemphill H. E., Kolenbrander P. E., Whiteley H. R. Dominance relationships in mixedly infected Bacillus subtilis. J Virol. 1972 Apr;9(4):594–601. doi: 10.1128/jvi.9.4.594-601.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rutberg L. Mapping of a temperate bacteriophage active on Bacillus subtilis. J Virol. 1969 Jan;3(1):38–44. doi: 10.1128/jvi.3.1.38-44.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sullivan M. A., Yasbin R. E., Young F. E. New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene. 1984 Jul-Aug;29(1-2):21–26. doi: 10.1016/0378-1119(84)90161-6. [DOI] [PubMed] [Google Scholar]
  33. Trautner T. A., Spatz H. C. Transfection in B. subtilis. Curr Top Microbiol Immunol. 1973;62:61–88. doi: 10.1007/978-3-642-65772-6_3. [DOI] [PubMed] [Google Scholar]
  34. Williams D. M., Duvall E. J., Lovett P. S. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. J Bacteriol. 1981 Jun;146(3):1162–1165. doi: 10.1128/jb.146.3.1162-1165.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]
  36. Yasbin R. E. DNA repair in Bacillus subtilis. I. The presence of an inducible system. Mol Gen Genet. 1977 Jun 8;153(2):211–218. [PubMed] [Google Scholar]
  37. Yasbin R. E., Fields P. I., Andersen B. J. Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene. 1980 Dec;12(1-2):155–159. doi: 10.1016/0378-1119(80)90026-8. [DOI] [PubMed] [Google Scholar]
  38. Yasbin R. E., Wilson G. A., Young F. E. Transformation and transfection in lysogenic strains of Bacillus subtilis 168. J Bacteriol. 1973 Feb;113(2):540–548. doi: 10.1128/jb.113.2.540-548.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yasbin R. E., Wilson G. A., Young F. E. Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J Bacteriol. 1975 Jan;121(1):296–304. doi: 10.1128/jb.121.1.296-304.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yasbin R. E., Young F. E. The influence of temperate bacteriophage phi105 on transformation and transfection in Bacillus subtilis. Biochem Biophys Res Commun. 1972 Apr 28;47(2):365–371. doi: 10.1016/0006-291x(72)90722-x. [DOI] [PubMed] [Google Scholar]
  41. de Vos W. M., Venema G. Transformation of Bacillus subtilis competent cells: identification of a protein involved in recombination. Mol Gen Genet. 1982;187(3):439–445. doi: 10.1007/BF00332625. [DOI] [PubMed] [Google Scholar]
  42. de Vos W. M., de Vries S. C., Venema G. Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis. Gene. 1983 Nov;25(2-3):301–308. doi: 10.1016/0378-1119(83)90234-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES