Abstract
Striated muscle fibers from the body and tail myotomes of a fish, the black Mollie, have been examined with particular attention to the sarcoplasmic reticulum (SR) and transverse tubular (or T) system. The material was fixed in osmium tetroxide and in glutaraldehyde, and the images provided by the two kinds of fixatives were compared. Glutaraldehyde fixes a fine structure that is broadly comparable with that preserved by osmium tetroxide alone but differs in some significant details. Especially significant improvements were obtained in the preservation of the T system, that is, the system of small tubules that pervades the fiber at every Z line or A-I junction level. As a result of this improved glutaraldehyde fixation, the T system is now clearly defined as an entity of fine structure distinct from the SR but uniquely associated with the SR and myofibrils. Glutaraldehyde fixation also reveals that the T system is a sarcolemmal derivative that retains its continuity with the sarcolemma and limits a space that is in direct communication with the extracellular environment. These structural features favor the conclusion that the T system plays a prominent role in the fast intracellular conduction of the excitatory impulse. The preservation of other elements of muscle fine structure, including the myofibrils, seems for reasons discussed, to be substantially improved by glutaraldehyde.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENNETT H. S. Modern concepts of structure of striated muscle. Am J Phys Med. 1955 Feb;34(1):46–67. [PubMed] [Google Scholar]
- BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOZLER E. Relaxation in extracted muscle fibers. J Gen Physiol. 1954 Nov 20;38(2):149–159. doi: 10.1085/jgp.38.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EBASHI F., EBASHI S. Removal of calcium and relaxation in actomyosin systems. Nature. 1962 Apr 28;194:378–379. doi: 10.1038/194378a0. [DOI] [PubMed] [Google Scholar]
- FRANZINI-ARMSTRONG C., PORTER K. R. THE Z DISC OF SKELETAL MUSCLE FIBRILS. Z Zellforsch Mikrosk Anat. 1964;61:661–672. doi: 10.1007/BF00342617. [DOI] [PubMed] [Google Scholar]
- GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
- HILL A. V. The abrupt transition from rest to activity in muscle. Proc R Soc Lond B Biol Sci. 1949 Oct;136(884):399–420. doi: 10.1098/rspb.1949.0033. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Local activation of muscle. Ann N Y Acad Sci. 1959 Aug 28;81:446–452. doi: 10.1111/j.1749-6632.1959.tb49326.x. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F., TAYLOR R. E. Function of Krause's membrane. Nature. 1955 Dec 3;176(4492):1068–1068. doi: 10.1038/1761068a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. The contractile structure of cardiac and skeletal muscle. Circulation. 1961 Aug;24:328–335. doi: 10.1161/01.cir.24.2.328. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUSCATELLO U., ANDERSSON-CEDERGREN E., AZZONE G. F., von der DECKEN The sarcotubular system of frog skeletal muscle. A morphological and biochemical study. J Biophys Biochem Cytol. 1961 Aug;10(4):201–218. doi: 10.1083/jcb.10.4.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NELSON D. A., BENSON E. S. On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J Cell Biol. 1963 Feb;16:297–313. doi: 10.1083/jcb.16.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEACHEY L. D., PORTER K. R. Intracellular impulse conduction in muscle cells. Science. 1959 Mar 13;129(3350):721–722. doi: 10.1126/science.129.3350.721. [DOI] [PubMed] [Google Scholar]
- PEACHEY L. D. Structure of the longitudinal body muscles of amphioxus. J Biophys Biochem Cytol. 1961 Aug;10(4):159–176. doi: 10.1083/jcb.10.4.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETERSON R. P., PEPE F. A. The relationship of the sarcoplasmic reticulum to sarcolemma in crayfish stretch receptor muscle. Am J Anat. 1961 Nov;109:277–297. doi: 10.1002/aja.1001090305. [DOI] [PubMed] [Google Scholar]
- PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBLUTH J. Contrast between osmium-fixed and permanganate-fixed toad spinal ganglia. J Cell Biol. 1963 Jan;16:143–157. doi: 10.1083/jcb.16.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIMPSON F. O., OERTELIS S. J. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system. J Cell Biol. 1962 Jan;12:91–100. doi: 10.1083/jcb.12.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPIRO D. The ultrastructure of heart muscle. Trans N Y Acad Sci. 1962 Jun;24:879–885. doi: 10.1111/j.2164-0947.1962.tb01449.x. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. 1955 May 25;1(3):257–270. doi: 10.1083/jcb.1.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBER A., WINICUR S. The role of calcium in the superprecipitation of actomyosin. J Biol Chem. 1961 Dec;236:3198–3202. [PubMed] [Google Scholar]
- WEBER H. H. The relaxation of the contracted actomyosin system. Ann N Y Acad Sci. 1959 Aug 28;81:409–421. doi: 10.1111/j.1749-6632.1959.tb49324.x. [DOI] [PubMed] [Google Scholar]