Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1964 Jul 1;22(1):227–258. doi: 10.1083/jcb.22.1.227

AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES

Burton Goldberg 1, Howard Green 1
PMCID: PMC2106491  PMID: 14195613

Abstract

In vitro synthesis of collagen by established mouse fibroblast lines has been examined by electron microscopy. During rapid growth (log phase), when collagen could not be detected in the cultures, the cells lacked a well developed granular ergastoplasm and Golgi system. Upon cessation of growth (stationary phase), collagen accumulated in the cultures and the cells demonstrated highly developed granular and smooth ergastoplasm. Collagen appeared to be synthesized in the rough-surfaced endoplasmic reticulum and to be transported as a soluble protein to the cell surface by vesicular elements of the agranular ergastoplasm. Fusion of the limiting membranes of these vesicles with the cell membrane permitted the discharge of the soluble collagen into the extracellular space, where fibrils of two diameter distributions formed. The secretion of collagen is concluded to be of the merocrine type. Alternative theories of collagen secretion are discussed and the data for established lines compared with the results of other in vitro and in vivo studies of collagen fibrillogenesis.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAPMAN J. A. Morphological and chemical studies of collagen formation. I. The fine structure of guinea pig granulomata. J Biophys Biochem Cytol. 1961 Mar;9:639–651. doi: 10.1083/jcb.9.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. EAGLE H., OYAMA V. I., LEVY M., FREEMAN A. E. Myo-Inositol as an essential growth factor for normal and malignant human cells in tissue culture. J Biol Chem. 1957 May;226(1):191–205. [PubMed] [Google Scholar]
  3. FERNANDO N. V., MOVAT H. Z. Fibrillogenesis in regenerating tendon. Lab Invest. 1963 Feb;12:214–229. [PubMed] [Google Scholar]
  4. GODMAN G. C., PORTER K. R. Chondrogenesis, studied with the electron microscope. J Biophys Biochem Cytol. 1960 Dec;8:719–760. doi: 10.1083/jcb.8.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GOLDBERG B., GREEN H., TODARO G. J. COLLAGEN FORMATION IN VITRO BY ESTABLISHED MAMMALIAN CELL LINES. Exp Cell Res. 1963 Aug;31:444–447. doi: 10.1016/0014-4827(63)90025-9. [DOI] [PubMed] [Google Scholar]
  6. GREEN H., GOLDBERG B. KINETICS OF COLLAGEN SYNTHESIS BY ESTABLISHED MAMMALIAN CELL LINES. Nature. 1963 Dec 14;200:1097–1098. doi: 10.1038/2001097a0. [DOI] [PubMed] [Google Scholar]
  7. GROSS J. The behavior of collagen units as a model in morphogenesis. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):261–274. doi: 10.1083/jcb.2.4.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gross J., Highberger J. H., Schmitt F. O. EXTRACTION OF COLLAGEN FROM CONNECTIVE TISSUE BY NEUTRAL SALT SOLUTIONS. Proc Natl Acad Sci U S A. 1955 Jan 15;41(1):1–7. doi: 10.1073/pnas.41.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAY E. D. The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae. J Biophys Biochem Cytol. 1958 Sep 25;4(5):583–591. doi: 10.1083/jcb.4.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JACKSON S. F., SMITH R. H. Studies on the biosynthesis of collagen. I. The growth of fowl osteoblasts and the formation of collagen in tissue culture. J Biophys Biochem Cytol. 1957 Nov 25;3(6):897–912. doi: 10.1083/jcb.3.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JAKUS M. A. Further observations on the fine structure of the cornea. Invest Ophthalmol. 1962 Apr;1:202–225. [PubMed] [Google Scholar]
  12. KARRER H. E. Electron microscope study of developing chick embryo aorta. J Ultrastruct Res. 1960 Dec;4:420–454. doi: 10.1016/s0022-5320(60)80032-9. [DOI] [PubMed] [Google Scholar]
  13. MARKS P. A., RIFKIND R. A. DANON D: POLYRIBOSOMES AND PROTEIN SYNTHESIS DURING RETICULOCYTE MATURATION IN VITRO. Proc Natl Acad Sci U S A. 1963 Aug;50:336–342. doi: 10.1073/pnas.50.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MOVAT H. Z., FERNANDO N. V. The fine structure of connective tissue. I. The fibroblast. Exp Mol Pathol. 1962 Dec;1:509–534. doi: 10.1016/0014-4800(62)90040-0. [DOI] [PubMed] [Google Scholar]
  15. PALADE G. E. A small particulate component of the cytoplasm. J Biophys Biochem Cytol. 1955 Jan;1(1):59–68. doi: 10.1083/jcb.1.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PORTER K. R., PAPPAS G. D. Collagen formation by fibroblasts of the chick embryo dermis. J Biophys Biochem Cytol. 1959 Jan 25;5(1):153–166. doi: 10.1083/jcb.5.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PROCKOP D. J., UDENFRIEND S. A specific method for the analysis of hydroxyproline in tissues and urine. Anal Biochem. 1960 Nov;1:228–239. doi: 10.1016/0003-2697(60)90050-6. [DOI] [PubMed] [Google Scholar]
  18. PUCK T. T., MARCUS P. I., CIECIURA S. J. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956 Feb 1;103(2):273–283. doi: 10.1084/jem.103.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROSS R., BENDITT E. P. Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope. J Biophys Biochem Cytol. 1961 Dec;11:677–700. doi: 10.1083/jcb.11.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WASSERMANN F. Fibrillogenesis in the regenerating rat tendon with special reference to growth and composition of the collagenous fibril. Am J Anat. 1954 May;94(3):399–437. doi: 10.1002/aja.1000940304. [DOI] [PubMed] [Google Scholar]
  23. WOOD G. C., KEECH M. K. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem J. 1960 Jun;75:588–598. doi: 10.1042/bj0750588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WOOD G. C. The formation of fibrils from collagen solutions. 2. A mechanism of collagen-fibril formation. Biochem J. 1960 Jun;75:598–605. doi: 10.1042/bj0750598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WOOD G. C. The formation of fibrils from collagen solutions. 3. Effect of chondroitin sulphate and some other naturally occurring polyanions on the rate of formation. Biochem J. 1960 Jun;75:605–612. doi: 10.1042/bj0750605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. YARDLEY J. H., HEATON M. W., GAINES L. M., Jr, SHULMAN L. E. Collagen formation by fibroblasts: preliminary electron microscopic observations using thin sections of tissue cultures. Bull Johns Hopkins Hosp. 1960 Jun;106:381–393. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES