Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1964 Nov 1;23(2):207–215. doi: 10.1083/jcb.23.2.207

ULTRASTRUCTURE OF ISOLATED KIDNEY MITOCHONDRIA TREATED WITH PHLORIZIN AND ATP

Mario H Burgos 1, Agustin Aoki 1, Fabio L Sacerdote 1
PMCID: PMC2106520  PMID: 14222809

Abstract

Direct electron microscopic evidence is reported of the ultrastructure of mitochondrial membranes and compartments in mitochondria isolated in 0.5 M sucrose from the rat kidney cortex and the experimental changes they undergo with phlorizin and ATP treatment. A heterogeneous population of mitochondria is recognized under control conditions. The mitochondria appear to be of 3 main types, normal, swollen, and contracted. Under phlorizin treatment, most of the mitochondria swell in less than 15 minutes, apparently at the expense of the matrix. Treatment with ATP, on the other hand, produces, during the same time, a marked contraction of the isolated mitochondria, with many refoldings of the inner membrane and marked increase in the electron opacity of the matrix. It is concluded from these observations that mitochondrial swelling and contraction should be related mainly to the matrix content.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgos M. H., Aoki A., Sacerdote F. L. Structural changes in isolated rat kidney mitochondria treated with phlorizin and ATP. Biochem Biophys Res Commun. 1964;14:370–374. doi: 10.1016/s0006-291x(64)80012-7. [DOI] [PubMed] [Google Scholar]
  2. CAULFIELD J. B. Effects of varying the vehicle for OsO4 in tissue fixation. J Biophys Biochem Cytol. 1957 Sep 25;3(5):827–830. doi: 10.1083/jcb.3.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIES R. E., FONNESU A., PRICE C. A. Movements of water and ions in mitochondria. Biochem J. 1956 Dec;64(4):754–768. doi: 10.1042/bj0640754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOUNCE A. L., WITTER R. F., MONTY K. J., PATE S., COTTONE M. A. A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. J Biophys Biochem Cytol. 1955 Mar;1(2):139–153. doi: 10.1083/jcb.1.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ERNSTER L., LINDBERG O. Animal mitochondria. Annu Rev Physiol. 1958;20:13–42. doi: 10.1146/annurev.ph.20.030158.000305. [DOI] [PubMed] [Google Scholar]
  6. ERNSTER L. Organization of mitochondrial DPN-linked systems. II. Regulation of alternative electron transfer pathways. Exp Cell Res. 1956 Jun;10(3):721–732. doi: 10.1016/0014-4827(56)90049-0. [DOI] [PubMed] [Google Scholar]
  7. KELLER D. M., LOTSPEICH W. D. Effect of phlorizin on the osmotic behavior of mitochondria in isotonic sucrose. J Biol Chem. 1959 Apr;234(4):991–994. [PubMed] [Google Scholar]
  8. LATTA H. Collagen in normal rat glomeruli. J Ultrastruct Res. 1961 Aug;5:364–373. doi: 10.1016/s0022-5320(61)80013-0. [DOI] [PubMed] [Google Scholar]
  9. LEHNINGER A. L. Ionic environment and the contraction of isolated rat-liver mitochondria by adenosine triphosphate. Biochim Biophys Acta. 1961 Apr 1;48:324–331. doi: 10.1016/0006-3002(61)90481-4. [DOI] [PubMed] [Google Scholar]
  10. LEHNINGER A. L., SCHNEIDER M. Wirkung von Phloridzin auf Mitochondrien. Hoppe Seylers Z Physiol Chem. 1958;313:138–146. doi: 10.1515/bchm2.1958.313.1.138. [DOI] [PubMed] [Google Scholar]
  11. LEHNINGER A. L. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev. 1962 Jul;42:467–517. doi: 10.1152/physrev.1962.42.3.467. [DOI] [PubMed] [Google Scholar]
  12. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TAPLEY D. F. The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria. J Biol Chem. 1956 Sep;222(1):325–339. [PubMed] [Google Scholar]
  15. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WEINBACH E. C., SHEFFIELD H., GARBUS J. RESTORATION OF OXIDATIVE PHOSPHORYLATION AND MORPHOLOGICAL INTEGRITY TO SWOLLEN, UNCOUPLED RAT LIVER MITOCHONDRIA. Proc Natl Acad Sci U S A. 1963 Sep;50:561–568. doi: 10.1073/pnas.50.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ZIEGLER D. M., LINNANE A. W. Studies on the electron transport system. XIII. Mitochondrial structure and dehydrogenase activity in isolated mitochondria. Biochim Biophys Acta. 1958 Oct;30(1):53–63. doi: 10.1016/0006-3002(58)90240-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES