Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Jan;170(1):380–385. doi: 10.1128/jb.170.1.380-385.1988

Genetic determinants for catabolite induction of antibiotic biosynthesis in Pseudomonas fluorescens HV37a.

N Gutterson 1, J S Ziegle 1, G J Warren 1, T J Layton 1
PMCID: PMC210653  PMID: 3121589

Abstract

Antibiotic biosynthesis is regulated by glucose in Pseudomonas fluorescens HV37a. Fusions between antibiotic biosynthetic operons (afu operons) and the Escherichia coli lac operon were isolated to evaluate the genetic determinants for the regulation of antibiotic biosynthesis. Four afu transcriptional units were defined, afuE, afuR, afuAB, and afuP. The afuE and afuR transcripts were promoted divergently at one locus and were catabolite induced, by 250-fold and 5-fold, respectively; the afuAB and afuP transcriptional units were not linked to the others and were not catabolite induced. Thus, regulation of afuE and afuR operon transcription is apparently the mechanism whereby glucose regulates antibiotic biosynthesis. Catabolite induction of the afuE and afuR transcriptional unit was dependent on the products of the afuA, afuB, and afuP genes. Expression of the afuE transcriptional unit was altered quantitatively in afuE mutants. Apparently the afuE transcriptional unit is regulated, at least in part, by its own gene products. Under inducing conditions, expression of the afuE, afuR, and afuP transcriptional units increased rapidly during a 6-h period.

Full text

PDF
380

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  3. Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. doi: 10.1128/mr.44.3.385-418.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engebrecht J., Nealson K., Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell. 1983 Mar;32(3):773–781. doi: 10.1016/0092-8674(83)90063-6. [DOI] [PubMed] [Google Scholar]
  6. Gutterson N. I., Layton T. J., Ziegle J. S., Warren G. J. Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent pseudomonad. J Bacteriol. 1986 Mar;165(3):696–703. doi: 10.1128/jb.165.3.696-703.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. James D. W., Jr, Gutterson N. I. Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol. 1986 Nov;52(5):1183–1189. doi: 10.1128/aem.52.5.1183-1189.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nealson K. H. Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol. 1977 Feb 4;112(1):73–79. doi: 10.1007/BF00446657. [DOI] [PubMed] [Google Scholar]
  9. Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Perlman R. L., Pastan I. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem Biophys Res Commun. 1969 Sep 24;37(1):151–157. doi: 10.1016/0006-291x(69)90893-6. [DOI] [PubMed] [Google Scholar]
  11. Stachel S. E., An G., Flores C., Nester E. W. A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J. 1985 Apr;4(4):891–898. doi: 10.1002/j.1460-2075.1985.tb03715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES