Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1964 Nov 1;23(2):339–354. doi: 10.1083/jcb.23.2.339

THE DEVELOPMENT OF BASAL BODIES AND FLAGELLA IN ALLOMYCES ARBUSCULUS

Fernando L Renaud 1, Hewson Swift 1
PMCID: PMC2106531  PMID: 14222818

Abstract

The development of basal bodies and flagella in the water mold Allomyces arbusculus has been studied with the electron microscope. A small pre-existing centriole, about 160 mµ in length, was found in an inpocketing of the nuclear membrane in the vegetative hypha. Thus, formation of a basal body does not occur de novo. When the hyphal tip started to differentiate into gametangia, the centrioles were found to exist in pairs. One of the members of the pair then grew distally to more than three times its original length, whereas the other remained the same size. The larger centriole would correspond to the basal body of a future gamete. Gametogenesis was usually induced by transferring a "ripe" culture to distilled water. Shortly after this was done, a few vesicles were pinched off from the cell membrane of the gametangium and came in contact with the basal body. Apparently, they fused and formed a large primary vesicle. The flagellum then started to grow by invaginating into it. Flagellar fibers were evident from the very beginning. As the flagellum grew so did the vesicle by fusion with secondary vesicles, thus coming to form the flagellar sheath. The different stages of flagellar morphogenesis are described and the possible interrelationships with other processes are discussed.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLONDEL B., TURIAN G. Relation between basophilia and fine structure of cytoplasm in the fungus Allomyces macrogynus Em. J Biophys Biochem Cytol. 1960 Feb;7:127–134. doi: 10.1083/jcb.7.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DIRKSEN E. R. The presence of centrioles in artificially activated sea urchin eggs. J Biophys Biochem Cytol. 1961 Oct;11:244–247. doi: 10.1083/jcb.11.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GALL J. G. Centriole replication. A study of spermatogenesis in the snail Viviparus. J Biophys Biochem Cytol. 1961 Jun;10:163–193. doi: 10.1083/jcb.10.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Neuberger A., Rivers R. V. The hydrolysis of glucosaminides by an enzyme in Helix pomatia. Biochem J. 1939 Oct;33(10):1580–1590. doi: 10.1042/bj0331580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ROBINOW C. F. Some observations on the mode of division of somatic nuclei of Mucor and Allomyces. Arch Mikrobiol. 1962;42:369–377. doi: 10.1007/BF00409072. [DOI] [PubMed] [Google Scholar]
  8. RYTER A., KELLENBERGER E. L'inclusion au polyester pour l'ultramicrotomie. J Ultrastruct Res. 1958 Dec;2(2):200–214. doi: 10.1016/s0022-5320(58)90018-2. [DOI] [PubMed] [Google Scholar]
  9. SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). I. THE AMOEBOID AND FLAGELLATE STAGES. J Protozool. 1963 Aug;10:297–313. doi: 10.1111/j.1550-7408.1963.tb01681.x. [DOI] [PubMed] [Google Scholar]
  10. SOROKIN S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962 Nov;15:363–377. doi: 10.1083/jcb.15.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SOTELO J. R., TRUJILLO-CENOZ O. Electron microscope study of the kinetic apparatus in animal sperm cells. Z Zellforsch Mikrosk Anat. 1958;48(5):565–601. doi: 10.1007/BF00342732. [DOI] [PubMed] [Google Scholar]
  12. TOKUYASU K., YAMADA E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys Biochem Cytol. 1959 Oct;6:225–230. doi: 10.1083/jcb.6.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Turian G. Synthèse différentielle d'acide ribonucléique et différenciation sexuelle chez l'Allomyces. Dev Biol. 1963 Feb;6(1):61–72. doi: 10.1016/0012-1606(63)90005-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES