Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Jan 1;24(1):95–116. doi: 10.1083/jcb.24.1.95

FINE STRUCTURE AND MORPHOGENIC MOVEMENTS IN THE GASTRULA OF THE TREEFROG, HYLA REGILLA

Patricia C Baker 1
PMCID: PMC2106552  PMID: 14286299

Abstract

The blastoporal groove of the early gastrula of the treefrog, Hyla regilla, was examined with the electron microscope. The innermost extension of the groove is lined with invaginating flask- and wedge-shaped cells of entoderm and mesoderm. The distal surfaces of these cells bear microvilli which are underlain with an electron-opaque layer composed of fine granular material and fibrils. The dense layer and masses of vesicles proximal to it fill the necks of the cells. In flask cells bordering the forming archenteron the vesicles are replaced by large vacuoles surrounded by layers of membranes. The cells lining the groove are tightly joined at their distal ends in the region of the dense layer. Proximally, the cell bodies are separated by wide intercellular spaces. The cell body, which is migrating toward the interior of the gastrula, contains the nucleus plus other organalles and inclusions common to amphibian gastrular cells. A dense layer of granular material, vesicles, and membranes lies beneath the surface of the cell body and extends into pseudopodium-like processes and surface undulations which cross the intercellular spaces. A special mesodermal cell observed in the dorsal lining of the groove is smaller and denser than the surrounding presumptive chordamesodermal cells. A long finger of cytoplasm, filled with a dense layer, vesicles and membranes, extends from its distal surface along the edge of the groove, ending in a tight interlocking with another mesodermal cell. Some correlations between fine structure and the mechanics of gastrulation are discussed, and a theory of invagination is proposed, based on contraction and expansion of the dense layer and the tight junctions at distal cell surfaces.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER P. C. CHANGES IN LIPID BODIES DURING GASTRULATION IN THE TREEFROG, HYLA REGILLA. Exp Cell Res. 1963 Aug;31:451–455. doi: 10.1016/0014-4827(63)90027-2. [DOI] [PubMed] [Google Scholar]
  2. BELL E. Some observations on the surface coat and intercellular matrix material of the amphibian ectoderm. Exp Cell Res. 1960 Aug;20:378–383. doi: 10.1016/0014-4827(60)90166-x. [DOI] [PubMed] [Google Scholar]
  3. DOLLANDER A. La structure du cortex de l'oeuf de Triton observée sur coupes fines et ultrafines au microscope ordinaire, et au microscope électronique. C R Seances Soc Biol Fil. 1954 Jan;148(1-2):152–154. [PubMed] [Google Scholar]
  4. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Niu M. C., Twitty V. C. The Differentiation of Gastrula Ectoderm in Medium Conditioned by Axial Mesoderm. Proc Natl Acad Sci U S A. 1953 Sep;39(9):985–989. doi: 10.1073/pnas.39.9.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. PARSONS D. F. A simple method for obtaining increased contrast in araldite sections by using postfixation staining of tissues with potassium permanganate. J Biophys Biochem Cytol. 1961 Nov;11:492–497. doi: 10.1083/jcb.11.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES