Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Feb 1;24(2):163–191. doi: 10.1083/jcb.24.2.163

AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD

Richard P Bunge 1, Mary Bartlett Bunge 1, Edith R Peterson 1
PMCID: PMC2106569  PMID: 14326105

Abstract

Explants prepared from 17- to 18-day fetal rat spinal cord were allowed to mature in culture; such preparations have been shown to differentiate and myelinate in vitro (61) and to be capable of complex bioelectric activity (14–16). At 23, 35, or 76 days, the cultures were fixed (without removal from the coverslip) in buffered OsO4, embedded in Epon, sectioned, and stained for light and electron microscopy. These mature explants generally are composed of several strata of neurons with an overlying zone of neuropil. The remarkable cytological similarity between in vivo and in vitro nervous tissues is established by the following observations. Cells and processes in the central culture mass are generally closely packed together with little intervening space. Neurons exhibit well developed Nissl bodies, elaborate Golgi regions, and subsurface cisternae. Axosomatic and axodendritic synapses, including synaptic junctions between axons and dendritic spines, are present. Typical synaptic vesicles and increased membrane densities are seen at the terminals. Variations in synaptic fine structure (Type 1 and Type 2 synapses of Gray) are visible. Some characteristics of the cultured spinal cord resemble infrequently observed specializations of in vivo central nervous tissue. Neuronal somas may display minute synapse-bearing projections. Occasionally, synaptic vesicles are grouped in a crystal-like array. A variety of glial cells, many apparently at intermediate stages of differentiation, are found throughout the otherwise mature explant. There is ultrastructural evidence of extensive glycogen deposits in some glial processes and scattered glycogen particles in neuronal terminals. This is the first description of the ultrastructure of cultured spinal cord. Where possible, correlation is made between the ultrastructural data and the known physiological properties of these cultures.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., LOYNING Y. Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature. 1963 May 11;198:540–542. doi: 10.1038/198540a0. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J., VOORHOEVE P. E. INHIBITORY SYNAPSES ON SOMAS OF PURKINJE CELLS IN THE CEREBELLUM. Nature. 1963 Aug 17;199:655–656. doi: 10.1038/199655a0. [DOI] [PubMed] [Google Scholar]
  3. BLACKSTAD T. W., KJAERHEIM A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol. 1961 Oct;117:133–159. doi: 10.1002/cne.901170202. [DOI] [PubMed] [Google Scholar]
  4. BORNSTEIN M. B., MURRAY M. R. Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum. J Biophys Biochem Cytol. 1958 Sep 25;4(5):499–504. doi: 10.1083/jcb.4.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BUNGE M. B., BUNGE R. P., RIS H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol. 1961 May;10:67–94. doi: 10.1083/jcb.10.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CRAIN S. M., PETERSON E. R. Bioelectric activity in long-term cultures of spinal cord tissues. Science. 1963 Aug 2;141(3579):427–429. doi: 10.1126/science.141.3579.427. [DOI] [PubMed] [Google Scholar]
  7. CRAIN S. M., PETERSON E. R. COMPLEX BIOELECTRIC ACTIVITY IN ORGANIZED TISSUE CULTURES OF SPINAL CORD (HUMAN, RAT AND CHICK). J Cell Physiol. 1964 Aug;64:1–13. doi: 10.1002/jcp.1030640102. [DOI] [PubMed] [Google Scholar]
  8. DE LORENZO A. J. Electron microscopy of the cerebral cortex. I. The ultrastructure and histochemistry of synaptic junctions. Bull Johns Hopkins Hosp. 1961 Apr;108:258–279. [PubMed] [Google Scholar]
  9. DE ROBERTIS E. D., BENNETT H. S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol. 1955 Jan;1(1):47–58. doi: 10.1083/jcb.1.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DE ROBERTIS E. Submicroscopic morphology and function of the synapse. Exp Cell Res. 1958;14(Suppl 5):347–369. [PubMed] [Google Scholar]
  11. DEITCH A. D., MURRAY M. R. The Nissl substance of living and fixed spinal ganglion cells. I. A phase contrast study. J Biophys Biochem Cytol. 1956 Jul 25;2(4):433–444. doi: 10.1083/jcb.2.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  13. GRAY E. G. Electron microscopy of neuroglial fibrils of the cerebral cortex. J Biophys Biochem Cytol. 1959 Aug;6(1):121–122. doi: 10.1083/jcb.6.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GRAY E. G. Electron microscopy of presynaptic organelles of the spinal cord. J Anat. 1963 Jan;97:101–106. [PMC free article] [PubMed] [Google Scholar]
  15. GRAY E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature. 1959 Jun 6;183(4675):1592–1593. doi: 10.1038/1831592a0. [DOI] [PubMed] [Google Scholar]
  16. GRAY E. G., GUILLERY R. W. A NOTE ON THE DENDRITIC SPINE APPARATUS. J Anat. 1963 Jul;97:389–392. [PMC free article] [PubMed] [Google Scholar]
  17. GRAY E. G., GUILLERY R. W. The basis for silver staining of synapses of the mammalian spinal cord: a light and electron microscope study. J Physiol. 1961 Aug;157:581–588. doi: 10.1113/jphysiol.1961.sp006744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HAMLYN L. H. An electron microscope study of pyramidal neurons in the Ammon's horn of the rabbit. J Anat. 1963 Apr;97:189–201. [PMC free article] [PubMed] [Google Scholar]
  19. HAMLYN L. H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J Anat. 1962 Jan;96:112–120. [PMC free article] [PubMed] [Google Scholar]
  20. HILD W. Myelogenesis in cultures of mammalian central nervous tissue. Z Zellforsch Mikrosk Anat. 1957;46(1):71–95. doi: 10.1007/BF01106147. [DOI] [PubMed] [Google Scholar]
  21. HILD W., TASAKI I. Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol. 1962 Mar;25:277–304. doi: 10.1152/jn.1962.25.2.277. [DOI] [PubMed] [Google Scholar]
  22. HOWATSON A. F., ALMEIDA J. D. A method for the study of cultured cells by thin sectioning and electron microscopy. J Biophys Biochem Cytol. 1958 Jan 25;4(1):115–118. doi: 10.1083/jcb.4.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LUSE S. A. Electron microscopic observations of the central nervous system. J Biophys Biochem Cytol. 1956 Sep 25;2(5):531–542. doi: 10.1083/jcb.2.5.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PALAY S. L., McGEE-RUSSELL S. M., GORDON S., Jr, GRILLO M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol. 1962 Feb;12:385–410. doi: 10.1083/jcb.12.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PALAY S. L. Synapses in the central nervous system. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):193–202. doi: 10.1083/jcb.2.4.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PALAY S. L. The fine structure of secretory neurons in the preoptic nucleus of the goldish (Carassius auratus). Anat Rec. 1960 Dec;138:417–443. doi: 10.1002/ar.1091380404. [DOI] [PubMed] [Google Scholar]
  30. PALAY S. L. The morphology of synapses in the central nervous system. Exp Cell Res. 1958;14(Suppl 5):275–293. [PubMed] [Google Scholar]
  31. PETERS A. Plasma membrane contacts in the central nervous system. J Anat. 1962 Apr;96:237–248. [PMC free article] [PubMed] [Google Scholar]
  32. PETERSON E. R., MURRAY M. R. Myelin sheath formation in cultures of avian spinal ganglia. Am J Anat. 1955 May;96(3):319–355. doi: 10.1002/aja.1000960302. [DOI] [PubMed] [Google Scholar]
  33. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. RICHARDSON K. C. The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens. J Anat. 1962 Oct;96:427–442. [PMC free article] [PubMed] [Google Scholar]
  35. ROBERTSON J. D., BODENHEIMER T. S., STAGE D. E. THE ULTRASTRUCTURE OF MAUTHNER CELL SYNAPSES AND NODES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:159–199. doi: 10.1083/jcb.19.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. ROSENBLUTH J. The visceral ganglion of Aplysia californica. Z Zellforsch Mikrosk Anat. 1963;60:213–236. doi: 10.1007/BF00350477. [DOI] [PubMed] [Google Scholar]
  37. ROSS L. L., BORNSTEIN M. B., LEHRER G. M. Electron microscopic observations of rat and mouse cerebellum in tissue culture. J Cell Biol. 1962 Jul;14:19–30. doi: 10.1083/jcb.14.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SCHULTZ R. L., MAYNARD E. A., PEASE D. C. Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Am J Anat. 1957 May;100(3):369–407. doi: 10.1002/aja.1001000305. [DOI] [PubMed] [Google Scholar]
  39. SCHULTZ R. L., PEASE D. C. Cicatrix formation in rat cerebral cortex as revealed by electron microscopy. Am J Pathol. 1959 Sep-Oct;35:1017–1041. [PMC free article] [PubMed] [Google Scholar]
  40. SLAUTTERBACK D. B. CYTOPLASMIC MICROTUBULES. I. HYDRA. J Cell Biol. 1963 Aug;18:367–388. doi: 10.1083/jcb.18.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. WOLFE D. E., POTTER L. T., RICHARDSON K. C., AXELROD J. Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science. 1962 Oct 19;138(3538):440–442. doi: 10.1126/science.138.3538.440. [DOI] [PubMed] [Google Scholar]
  42. WOLF M. K. DIFFERENTIATION OF NEURONAL TYPES AND SYNAPSES IN MYELINATING CULTURES OF MOUSE CEREBELLUM. J Cell Biol. 1964 Jul;22:259–279. doi: 10.1083/jcb.22.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. WYCKOFF R. W., YOUNG J. Z. The motorneuron surface. Proc R Soc Lond B Biol Sci. 1956 Mar 13;144(917):440–450. doi: 10.1098/rspb.1956.0002. [DOI] [PubMed] [Google Scholar]
  44. YAMAMOTO T. Some observations on the fine structure of the sympathetic ganglion of bullfrog. J Cell Biol. 1963 Jan;16:159–170. doi: 10.1083/jcb.16.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES