Abstract
The choline concentration used in the growth medium influences the density of mitochondria produced by the chol-1 mutant of Neurospora. Isopycnic centrifugation in sucrose gradients can be used to determine the density of mitochondria, and can resolve into two populations, mitochondria derived from a mixture of cells grown at low (1 µg/ml choline chloride) and high (10 µg/ml choline chloride) choline levels. In an experiment in which cells are shifted from low to high choline growth conditions, mitochondria obtained after varying time periods show a gradual decrease in density tending toward the level typical of high choline mitochondria. Over a 90-minute period of observation, during which time there is an increase of mitochondrial protein mass of ∼ 50 per cent over that initially present, the mitochondria change density as a single population. These results are consistent with the view that mitochondria grow by random accretion of new lecithin into existing mitochondrial structures, and also that the mitochondrial population increases by division.
Full Text
The Full Text of this article is available as a PDF (788.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAHR G. F., ZEITLER E. Study of mitochondria in rat liver. Quantitative electron microscopy. J Cell Biol. 1962 Dec;15:489–501. doi: 10.1083/jcb.15.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- LINNANE A. W., VITOLS E., NOWLAND P. G. Studies on the origin of yeast mitochondria. J Cell Biol. 1962 May;13:345–350. doi: 10.1083/jcb.13.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCK D. J. Formation of mitochondria in Neurospora crassa. A quantitative radioautographic study. J Cell Biol. 1963 Mar;16:483–499. doi: 10.1083/jcb.16.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUCK D. J. THE INFLUENCE OF PRECURSOR POOL SIZE ON MITOCHONDRIAL COMPOSITION IN NEUROSPORA CRASSA. J Cell Biol. 1965 Mar;24:445–460. doi: 10.1083/jcb.24.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORPURGO G., SERLUPI-CRESCENZI G., TECCE G., VALENTE F., VENETTACCI D. INFLUENCE OF ERGOSTEROL ON THE PHYSIOLOGY AND THE ULTRA-STRUCTURE OF SACCHAROMYCES CEREVISIAE. Nature. 1964 Feb 29;201:897–899. doi: 10.1038/201897a0. [DOI] [PubMed] [Google Scholar]
- Polakis E. S., Bartley W., Meek G. A. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J. 1964 Feb;90(2):369–374. doi: 10.1042/bj0900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLACE P. G., LINNANE A. W. OXYGEN-INDUCED SYNTHESIS OF YEAST MITOCHONDRIA. Nature. 1964 Mar 21;201:1191–1194. doi: 10.1038/2011191a0. [DOI] [PubMed] [Google Scholar]